Skip to main content

Sugarcane: Contribution of Process-Based Models for Understanding and Mitigating Impacts of Climate Variability and Change on Production

  • Chapter
  • First Online:
Systems Modeling

Abstract

Sugarcane is cultivated on about 26 M ha across tropics and subtropics worldwide as a source of many industrial products, especially sugar and also bioenergy purposes (biofuel as ethanol and electricity). As the crop is grown in a wide range of climates, soils, and countries, different cropping systems are adopted across producing areas, resulting in large genotype × environment × management interactions, consequently large variations in yield levels are found. Climate and its variability and change play an important role in plant processes. In this chapter, a climate characterization of the main producing countries is presented along with the influence of main weather variables on sugarcane growth, development, and yields. The key variables of climate change are also explored. The effect of weather conditions on key sugarcane yield-building processes are well captured by process-based models. Two are embedded in the well-known and readily available agricultural systems modeling platforms; DSSAT/CANEGRO and APSIM-Sugar. These two models and a third (WaterSense) are described briefly with highlights of recent improvements and weaknesses. Finally, this chapter lists a series of application papers found so far in literature that included, at least to some extent, the intrinsic effect of climate and its variability mostly based on long-term weather data series. Special focus is then given to irrigation and nitrogen management, yield analysis (gaps, benchmarking, and forecasting), climate change issues, drought adaptation, and breeding studies. Even though sugarcane models have some weaknesses, they are considered as powerful tools for understanding and proposing management and adaptive actions to mitigate or increase yields in risky climates, in the present or future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad S, Nadeem M, Abbas G et al (2016) Quantification of the effects of climate warming and crop management on sugarcane phenology. Clim Res 71:47–61. https://doi.org/10.3354/cr01419

    Article  Google Scholar 

  • Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179:5–9. https://doi.org/10.1111/j.1469-8137.2008.02500.x

    Article  CAS  PubMed  Google Scholar 

  • Alkimim A, Clarke KC (2018) Land use change and the carbon debt for sugarcane ethanol production in Brazil. Land Use Policy 72:65–73. https://doi.org/10.1016/j.landusepol.2017.12.039

    Article  Google Scholar 

  • Allen LH, Jones P, Jones JW (1985) Rising atmospheric CO2 and evapotranspiration. In: Proceedings of the national conference on advances in evapotranspiration. ASAE, St Joseph/Chicago, pp 13–27

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO, Rome

    Google Scholar 

  • Allison JCS, Pammenter NW, Haslam RJ (2007) Why does sugarcane (Saccharum sp. hybrid) grow slowly? S Afr J Bot 73:546–551. https://doi.org/10.1016/j.sajb.2007.04.065

    Article  Google Scholar 

  • Anderson WB, Seager R, Baethgen W et al (2019) Synchronous crop failures and climate-forced production variability. Sci Adv 5:eaaw1976. https://doi.org/10.1126/sciadv.aaw1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An-Vo DA, Mushtaq S, Reardon-Smith K et al (2019) Value of seasonal forecasting for sugarcane farm irrigation planning. Eur J Agron 104:37–48. https://doi.org/10.1016/j.eja.2019.01.005

    Article  Google Scholar 

  • Armour JD, Nelson PN, Daniells JW et al (2013) Nitrogen leaching from the root zone of sugarcane and bananas in the humid tropics of Australia. Agric Ecosyst Environ 180:68–78. https://doi.org/10.1016/j.agee.2012.05.007

    Article  CAS  Google Scholar 

  • Attard SJ, Inman-Bamber NG, Engelke J (2003) Irrigation scheduling in sugarcane based on atmospheric evaporative demand. Proc Aust Soc Sugar Cane Technol 25 (CD-ROM)

    Google Scholar 

  • Baez-Gonzalez AD, Kiniry JR, Meki MN et al (2018) Potential impact of future climate change on sugarcane under dryland conditions in Mexico. J Agron Crop Sci:1–14. https://doi.org/10.1111/jac.12278

  • Basnayake J, Jackson PA, Inman-Bamber NG, Lakshmanan P (2012) Sugarcane for water-limited environments. Genetic variation in cane yield and sugar content in response to water stress. J Exp Bot 63:6023–6033. https://doi.org/10.1093/jxb/ers251

    Article  CAS  PubMed  Google Scholar 

  • Basnayake J, Jackson PA, Inman-Bamber NG, Lakshmanan P (2015) Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity. J Exp Bot 66:3945–3958. https://doi.org/10.1093/jxb/erv194

    Article  CAS  PubMed  Google Scholar 

  • Bell MJ, Garside AL (2005) Shoot and stalk dynamics and the yield of sugarcane crops in tropical and subtropical Queensland, Australia. Field Crop Res 92:231–248. https://doi.org/10.1016/j.fcr.2005.01.032

    Article  Google Scholar 

  • Bello CAC (2013) Uso del modelo Aquacrop para estimar rendimientos para el cultivo de caña de azúcar en el departamento del Valle del Cauca

    Google Scholar 

  • Berding N, Moore PH (2001) Advancing from opportunistic sexual recombination in sugarcane. Lessons from tropical photoperiodic research. Proc Int Soc Sugar Cane Technol 24:482–487

    Google Scholar 

  • Bezuidenhout CN, Singels A (2007a) Operational forecasting of South African sugarcane production: part 1 – system description. Agric Syst 92:23–38. https://doi.org/10.1016/j.agsy.2006.02.001

    Article  Google Scholar 

  • Bezuidenhout CN, Singels A (2007b) Operational forecasting of South African sugarcane production: part 2 – system evaluation. Agric Syst 92:39–51. https://doi.org/10.1016/j.agsy.2006.02.001

    Article  Google Scholar 

  • Bezuidenhout CN, Singels A, Hellmann D (2002) Whole farm harvesting strategy optimisation using the CANEGRO model: a case study for irrigated and rainfed sugarcane. Proc S Afr Sugar Technol Assoc 76:250–259

    Google Scholar 

  • Bhengra AH, Yadav MK, Patel C et al (2016) Calibration and validation study of sugarcane (DSSAT-CANEGRO V4.6.1) model over North Indian region. J Agrometeorol 18:234–239

    Google Scholar 

  • Biggs JS, Thorburn PJ, Crimp S et al (2013) Interactions between climate change and sugarcane management systems for improving water quality leaving farms in the Mackay Whitsunday region, Australia. Agric Ecosyst Environ 180:79–89. https://doi.org/10.1016/j.agee.2011.11.005

    Article  CAS  Google Scholar 

  • Black E, Vidale PL, Verhoef A et al (2012) Cultivating C4 crops in a changing climate: sugarcane in Ghana. Environ Res Lett 7:044027. https://doi.org/10.1088/1748-9326/7/4/044027

    Article  Google Scholar 

  • Bocca FF, Rodrigues LHA, Arraes NAM (2015) When do I want to know and why? Different demands on sugarcane yield predictions. Agric Syst 135:48–56. https://doi.org/10.1016/j.agsy.2014.11.008

    Article  Google Scholar 

  • Bonhomme R (2000) Beware of comparing RUE values calculated from PAR vs solar radiation or absorbed vs intercepted radiation. Field Crop Res 68:247–252. https://doi.org/10.1016/S0378-4290(00)00120-9

    Article  Google Scholar 

  • Bonnett GD (2014) Developmental stages (phenology). In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 35–53

    Google Scholar 

  • Bonnett GD, Hewitt ML, Glassop D (2006) Effects of high temperature on the growth and composition of sugarcane internodes. Aust J Agric Res 57:1087–1095. https://doi.org/10.1071/AR06042

    Article  Google Scholar 

  • Boogaard HL, Van Diepen CA, Rötter RP et al (2014) WOFOST Control Centre 2.1 and WOFOST 7.1.7. 133

    Google Scholar 

  • Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crops models. Agron J 88:704–716. https://doi.org/10.2134/agronj1996.00021962008800050005x

    Article  Google Scholar 

  • Boote KJ, Allen LH, Prasad PVV, Jones JW (2010) Testing effects of climate change in crop models. In: Hillel D, Rosenzweig C (eds) Handbook of climate change and agroecosystems – impacts, adaptation and mitigation. Imperial College Press, London, pp 109–129

    Google Scholar 

  • Börjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective – what determines this? Appl Energy 86:589–594. https://doi.org/10.1016/j.apenergy.2008.11.025

    Article  CAS  Google Scholar 

  • Brandani CB, Abbruzzini TF, Williams S et al (2015) Simulation of management and soil interactions impacting SOC dynamics in sugarcane using the CENTURY Model. GCB Bioenergy 7:646–657. https://doi.org/10.1111/gcbb.12175

    Article  Google Scholar 

  • Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F, Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet JM, Meynard J-M, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances, I. Theory and parameterization applied to wheat and corn. Agronomie 18:311–346

    Google Scholar 

  • Cardozo NP, Sentelhas PC, Panosso AR et al (2015) Modeling sugarcane ripening as a function of accumulated rainfall in Southern Brazil. Int J Biometeorol 59:1913–1925. https://doi.org/10.1007/s00484-015-0998-6

    Article  PubMed  Google Scholar 

  • Cheeroo-Nayamuth FB, Nayamuth RAH (2001) Climate change and sucrose production in Mauritius. Proc Int Soc Sugar Cane Technol 24:107–112

    Google Scholar 

  • Cheeroo-Nayamuth F, Robertson M, Wegener M, Nayamuth AR (2000) Using a simulation model to assess potential and attainable sugar cane yield in Mauritius. Field Crop Res 66:225–243. https://doi.org/10.1016/S0378-4290(00)00069-1

    Article  Google Scholar 

  • Cheeroo-Nayamuth BF, Bezuidenhout CN, Kiker GA, Nayhamuth AR (2003) Validation of CANEGRO-DSSAT V3.5 for contrasting sugarcane varieties in Mauritius. Proc S Afr Sugar Technol Assoc 7:601–604

    Google Scholar 

  • Cheeroo-Nayamuth B, Nayamuth A, Koonjah S (2011) Yield analysis in the west sector of the Mauritian sugarcane industry. Proc S Afr Sugar Technol Assoc 84:106–115

    Google Scholar 

  • Chopart J-L, Rodrigues SR, Carvalho de Azevedo M, de Conti Medina C (2008) Estimating sugarcane root length density through root mapping and orientation modelling. Plant Soil 313:101–112. https://doi.org/10.1007/s11104-008-9683-4

    Article  CAS  Google Scholar 

  • Chopart JL, Azevedo MCB, Le Mézo L, Marion D (2010) Functional relationship between sugarcane root biomass and length for cropping system applications. Sugar Tech 12:317–321. https://doi.org/10.1007/s12355-010-0044-2

    Article  CAS  Google Scholar 

  • Christina M, Le Mezo L, Mezino M et al (2019) Modelling the annual yield variability in sugarcane in Réunion. Proc Int Soc Sugar Cane Technol 30:393–401

    Google Scholar 

  • Coleman RE (1963) Effect of temperature on flowering in sugarcane. Int Sugar J 6:351–353

    Google Scholar 

  • Costa LG (2017) Crescimento, desenvolvimento e consumo hídrico de cana-de-açúcar sob dois sistemas de manejo da palha. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, Brasil [in Portuguese]

    Google Scholar 

  • Costa LG, Marin FR, Nassif DSP et al (2014) Simulação do efeito do manejo da palha e do nitrogênio na produtividade da cana-de-açúcar. Rev Bras Eng Agrícola e Ambient 18:469–474. https://doi.org/10.1590/S1415-43662014000500001

    Article  Google Scholar 

  • Cuadra SV, Costa MH, Kucharik CJ et al (2012) A biophysical model of sugarcane growth. GCB Bioenergy 4:36–48. https://doi.org/10.1111/j.1757-1707.2011.01105.x

    Article  Google Scholar 

  • da Silva TGF (2009) Análise de crescimento, interação biosfera-atmosfera e eficiência do uso de água da cana-de-açúcar irrigada no submédio do Vale do São Francisco. Universidade Federal de Viçosa, Viçosa, Brasil [In Portuguese]

    Google Scholar 

  • da Silva RF (2012) Calibração do modelo DSSAT/Canegro para a cana-de-açúcar e seu uso para a avaliação do impacto das mudanças climáticas. Universidade Federal de Viçosa, Viçosa, Brasil [In Portuguese]

    Google Scholar 

  • de Barros I, Thorburn PJ, Biggs JS, et al (2018) Simulações de Práticas de Manejo na Produção de Cana-de-Açúcar nos Tabuleiros Costeiros de Alagoas. Aracaju, SE, Brazil

    Google Scholar 

  • de Carvalho AL, Menezes RSC, Nóbrega RS et al (2015) Impact of climate changes on potential sugarcane yield in Pernambuco, northeastern region of Brazil. Renew Energy 78:26–34. https://doi.org/10.1016/j.renene.2014.12.023

    Article  Google Scholar 

  • de Lange JDE, Singels A (2003) Using the internet-based Canesim model for crop estimation in the Umfolozi mill supply area. Proc S Afr Sugar Technol Assoc 77:592–595

    Google Scholar 

  • de Oliveira APP, Thorburn PJ, Biggs JS et al (2016) The response of sugarcane to trash retention and nitrogen in the Brazilian coastal tablelands: a simulation study. Exp Agric 52:69–86. https://doi.org/10.1017/S0014479714000568

    Article  Google Scholar 

  • de Oliveira MPG, Bocca FF, Rodrigues LHA (2017) From spreadsheets to sugar content modeling: a data mining approach. Comput Electron Agric 132:14–20. https://doi.org/10.1016/J.COMPAG.2016.11.012

    Article  Google Scholar 

  • De Silva ALC, De Costa WAJM (2012) Growth and radiation use efficiency of sugarcane under irrigated and rain-fed conditions in Sri Lanka. Sugar Tech 14:247–254. https://doi.org/10.1007/s12355-012-0148-y

    Article  CAS  Google Scholar 

  • de Souza AP, Gaspar M, Da Silva EA et al (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127. https://doi.org/10.1111/j.1365-3040.2008.01822.x

    Article  CAS  PubMed  Google Scholar 

  • de Vries FWTP, Jansen DM, ten Berge HFM, Bakema A (1989) Simulation of ecophysiological process of growth in several annual crops. Pudoc/IRRI, Wageningen

    Google Scholar 

  • Dias HB, Sentelhas PC (2017) Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed fields. Field Crop Res 213:174–185. https://doi.org/10.1016/j.fcr.2017.07.022

    Article  Google Scholar 

  • Dias HB, Sentelhas PC (2018a) Drying-off periods for irrigated sugarcane to maximize sucrose yields under Brazilian conditions. Irrig Drain 67:527–537. https://doi.org/10.1002/ird.2263

    Article  Google Scholar 

  • Dias HB, Sentelhas PC (2018b) Sugarcane yield gap analysis in Brazil – a multi-model approach for determining magnitudes and causes. Sci Total Environ 637–638:1127–1136. https://doi.org/10.1016/j.scitotenv.2018.05.017

    Article  CAS  PubMed  Google Scholar 

  • Dias HB, Inman-Bamber G, Bermejo R, Sentelhas PC, Christodoulou D (2019) New APSIM-Sugar features and parameters required to account for high sugarcane yields in tropical environments. Field Crop Res 235:38–53. https://doi.org/10.1016/j.fcr.2019.02.002

    Article  Google Scholar 

  • Dias HB, Inman-Bamber G, Everingham Y, Sentelhas PC, Bermejo R, Christodoulou D (2020) Traits for canopy development and light interception by twenty-seven Brazilian sugarcane varieties. Field Crop Res 249:107716. https://doi.org/10.1016/j.fcr.2020.107716

    Article  Google Scholar 

  • Donaldson RA (2009) Seasonal effects on the potential biomass and sucrose accumulation of some commercial cultivars of sugarcane. University of KwaZulu-Natal, Faculty of Science and Agriculture

    Google Scholar 

  • Donaldson RA, Bezuidenhout CN (2000) Determining the maximum drying-off periods for sugarcane grown in different regions of the South African Industry. Proc S Afr Sugar Technol Assoc 74:162–166

    Google Scholar 

  • Donaldson RA, Redshaw KA, Rhodes R, van Antwerpen R (2008) Season effects on productivity of some commercial south African sugarcane cultivars, I: biomass and radiation use efficiency. Proc S Afr Sugar Technol Assoc 81:517–527

    Google Scholar 

  • dos Vianna MS, Sentelhas PC (2014) Simulação do risco de deficit hídrico em regiões de expansão do cultivo de cana-de-açúcar no Brasil. Pesqui Agropecuária Bras 49:237–246. https://doi.org/10.1590/S0100-204X2014000400001

    Article  Google Scholar 

  • dos Vianna MS, Sentelhas PC (2016) Performance of DSSAT CSM-CANEGRO under operational conditions and its use in determining the ‘saving irrigation’ impact on sugarcane crop. Sugar Tech 18:75–86. https://doi.org/10.1007/s12355-015-0367-0

    Article  CAS  Google Scholar 

  • Driessen PM, Konijn NT (1992) Land-use system analysis. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Edreira JIR, Cassman KG, Hochman Z et al (2018) Beyond the plot: technology extrapolation domains for scaling out agronomic science. Environ Res Lett 13:054027. https://doi.org/10.1088/1748-9326/aac092

    Article  Google Scholar 

  • Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and significance. Crop Sci 39:1544–1551. https://doi.org/10.2135/cropsci1999.3961544x

    Article  Google Scholar 

  • Everingham YL, Muchow RC, Stone RC et al (2002) Enhanced risk management and decision-making capability across the sugarcane industry value chain based on seasonal climate forecasts. Agric Syst 74:459–477. https://doi.org/10.1016/S0308-521X(02)00050-1

    Article  Google Scholar 

  • Everingham Y, Ticehurst C, Barrett D et al (2005) Yield forecasting for marketers. Proc Aust Soc Sugar Cane Technol 27:51–60

    Google Scholar 

  • Everingham YL, Inman-Bamber NG, Thorburn PJ, McNeill TJ (2007) A Bayesian modelling approach for long lead sugarcane yield forecasts. Aust J Agric Res 58:87–94

    Google Scholar 

  • Everingham Y, Baillie C, Inman-Bamber G, Baillie J (2008) Forecasting water allocations for Bundaberg sugarcane farmers. Clim Res 36:231–239. https://doi.org/10.3354/cr00743

    Article  Google Scholar 

  • Everingham YL, Smyth CW, Inman-Bamber NG (2009) Ensemble data mining approaches to forecast regional sugarcane crop production. Agric For Meteorol 149:689–696. https://doi.org/10.1016/j.agrformet.2008.10.018

    Article  Google Scholar 

  • Everingham YL, Inman-Bamber NG, Sexton J, Stokes C (2015) A dual ensemble agroclimate modelling procedure to assess climate change impacts on sugarcane production in Australia. Agric Sci 6:870–888. https://doi.org/10.4236/as.2015.68084

    Article  CAS  Google Scholar 

  • Everingham YL, Sexton J, Skocaj D, Inman-Bamber NG (2016) Accurate prediction of sugarcane yield using a random forest algorithm. Agron Sustain Dev 36. https://doi.org/10.1007/s13593-016-0364-z

  • FAO (2019) FAOSTAT. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home. Accessed 8 May 2019

  • Ferreira Junior RA, de Souza JL, Lyra GB et al (2015) Energy conversion efficiency in sugarcane under two row spacings in northeast of Brazil. Rev Bras Eng Agrícola e Ambient 19:741–747. https://doi.org/10.1590/1807-1929/agriambi.v19n8p741-747

    Article  Google Scholar 

  • Fischer RA (2015) Definitions and determination of crop yield, yield gaps, and of rates of change. Field Crop Res 182:9–18. https://doi.org/10.1016/j.fcr.2014.12.006

    Article  Google Scholar 

  • Franco HCJ, Otto R, Faroni CE et al (2011) Nitrogen in sugarcane derived from fertilizer under Brazilian field conditions. Field Crop Res 121:29–41. https://doi.org/10.1016/j.fcr.2010.11.011

    Article  Google Scholar 

  • Galdos MV, Cerri CC, Cerri CEP et al (2009a) Simulation of soil carbon dynamics under sugarcane with the CENTURY model. Soil Sci Soc Am J 73:802. https://doi.org/10.2136/sssaj2007.0285

    Article  CAS  Google Scholar 

  • Galdos MV, Cerri CC, Cerri CEP (2009b) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347–352. https://doi.org/10.1016/j.geoderma.2009.08.025

    Article  CAS  Google Scholar 

  • Ghannoum O, Conroy JP, Driscoll SP et al (2003) Nonstomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. New Phytol 159:599–608. https://doi.org/10.1046/j.1469-8137.2003.00835.x

    Article  CAS  Google Scholar 

  • Goldemberg J, Mello FFC, Cerri CEP et al (2014) Meeting the global demand for biofuels in 2021 through sustainable land use change policy. Energy Policy 69:14–18. https://doi.org/10.1016/j.enpol.2014.02.008

    Article  Google Scholar 

  • Gosnell JM (1973) Some factors affecting flowering in sugarcane. Proc S Afr Sugar Technol Assoc 47:144–147

    Google Scholar 

  • Grof CPL, Campbell JA, Kravchuk O et al (2010) Temperature effect on carbon partitioning in two commercial cultivars of sugarcane. Funct Plant Biol 37:334. https://doi.org/10.1071/fp09216

    Article  Google Scholar 

  • Gunarathna MHJP, Sakai K, Nakandakari T et al (2019) Sensitivity analysis of plant- and cultivar-specific parameters of APSIM-Sugar model: variation between climates and management conditions. Agronomy 9:242. https://doi.org/10.3390/agronomy9050242

    Article  CAS  Google Scholar 

  • Heino M, Puma MJ, Ward PJ et al (2018) Two-thirds of global cropland area impacted by climate oscillations. Nat Commun 9:1257. https://doi.org/10.1038/s41467-017-02071-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins A, Thorburn P, Archer A, Jakku E (2007) Opportunities for value chain research in sugar industries. Agric Syst 94:611–621. https://doi.org/10.1016/J.AGSY.2007.02.011

    Article  Google Scholar 

  • Hoffman N, Patton A, Malan C et al (2017) An experimental and crop modelling assessment of elevated atmospheric CO2 effects on sugarcane productivity. Proc S Afr Sugar Technol Assoc 90:131–134

    Google Scholar 

  • Hoffman N, Singels A, Patton A, Ramburan S (2018) Predicting genotypic differences in irrigated sugarcane yield using the Canegro model and independent trait parameter estimates. Eur J Agron 96:13–21. https://doi.org/10.1016/j.eja.2018.01.005

    Article  Google Scholar 

  • Holzworth DP, Huth NI, deVoil PG et al (2014) APSIM – evolution towards a new generation of agricultural systems simulation. Environ Model Softw 62:327–350. https://doi.org/10.1016/j.envsoft.2014.07.009

    Article  Google Scholar 

  • Hoogenboom G, Porter CH, Shelia V et al (2019) Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5

    Google Scholar 

  • Inman-Bamber NG (1991) A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. S Afr J Plant Soil 9:37–41. https://doi.org/10.1080/02571862.1991.10634587

    Article  Google Scholar 

  • Inman-Bamber NG (1994) Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crop Res 36:41–51. https://doi.org/10.1016/0378-4290(94)90051-5

    Article  Google Scholar 

  • Inman-Bamber NG (1995) Climate and water constraints to production in the south African sugar industry. Proc S Afr Sugar Technol Assoc 69:55–59

    Google Scholar 

  • Inman-Bamber NG (2000) History of the Canegro model. In: Proceedings of international CANEGRO work. South African Sugarcane Research Institute, Mount Edgecombe, South Africa, pp 5–8

    Google Scholar 

  • Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crop Res 89:107–122. https://doi.org/10.1016/j.fcr.2004.01.018

    Article  Google Scholar 

  • Inman-Bamber NG (2014) Sugarcane yields and yield-limiting processes. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 579–600

    Google Scholar 

  • Inman-Bamber NG, Attard SJ (2008) Water savings and water accounting in irrigated sugarcane. Proc Aust Soc Sugar Cane Technol 30:251–259

    Google Scholar 

  • Inman-Bamber NG, Jager MDE (1988) Effect of water stress on sugarcane stalk growth and quality. Proc S Afr Sugar Technol Assoc 52:140–144

    Google Scholar 

  • Inman-Bamber NG, Kiker GA (1998) DSSAT/CANEGRO 3.10: DSSAT version 3.1. University of Hawaii, Honolulu

    Google Scholar 

  • Inman-Bamber NG, McGlinchey MG (2003) Crop coefficients and water-use estimates for sugarcane based on long-term Bowen ratio energy balance measurements. Field Crop Res 83:125–138. https://doi.org/10.1016/S0378-4290(03)00069-8

    Article  Google Scholar 

  • Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits. Field Crop Res 92:185–202. https://doi.org/10.1016/j.fcr.2005.01.023

    Article  Google Scholar 

  • Inman-Bamber NG, Thompson GD (1989) Models of dry matter accumulation by sugarcane. Proc S Afr Sugar Technol Assoc 63:212–216

    Google Scholar 

  • Inman-Bamber NG, Culverwell TL, McGlinchey MG (1993) Predicting yield responses to irrigation of sugarcane from a growth model and field records. Proc S Afr Sugar Technol Assoc 67:66–72

    Google Scholar 

  • Inman-Bamber NG, Robertson MJ, Muchow RC et al (1999) Boosting yields with limited irrigation water. Proc Aust Soc Sugar Cane Technol 21:203–211

    Google Scholar 

  • Inman-Bamber NG, Everingham YL, Muchow RC (2001) Modelling water stress response in sugarcane: validation and application of the APSIM-Sugarcane model. In: Proceedings of the 10th Australian agronomy conference, Hobart, Australia

    Google Scholar 

  • Inman-Bamber NG, Attard SJ, Spillman MF (2004) Can lodging be controlled through irrigation? Proc Aust Soc Sugar Cane Technol 26:1–11

    Google Scholar 

  • Inman-Bamber NG, Attard SA, Baillie C et al (2005) A web-based system for planning use of limited irrigation water in sugarcane. Proc Aust Soc Sugar Cane Technol 27:170–181

    Google Scholar 

  • Inman-Bamber NG, Webb WA, Verrall SA (2006) Participatory irrigation research and scheduling in the Ord: R&D. Proc Aust Soc Sugar Cane Technol 28:155–163

    Google Scholar 

  • Inman-Bamber NG, Attard SJ, Verrall SA et al (2007) A web-based system for scheduling irrigation in sugarcane. Proc Aust Soc Sugar Cane Technol 26:459–464

    Google Scholar 

  • Inman-Bamber NG, Jackson P, Bourgault M (2011) Genetic adjustment to changing climates: sugarcane. In: Yadav SS, Redden R, Hatfield JL et al (eds) Crop adaptation to climate change. Wiley, Chichester, pp 439–447

    Google Scholar 

  • Inman-Bamber NG, Lakshmanan P, Park S (2012) Sugarcane for water-limited environments: theoretical assessment of suitable traits. Field Crop Res 134:95–104. https://doi.org/10.1016/j.fcr.2012.05.004

    Article  Google Scholar 

  • Inman-Bamber NG, Jackson PA, Stokes CJ et al (2016) Sugarcane for water-limited environments: enhanced capability of the APSIM sugarcane model for assessing traits for transpiration efficiency and root water supply. Field Crop Res 196:112–123. https://doi.org/10.1016/j.fcr.2016.06.013

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jackson P, Basnayake J, Inman-Bamber G et al (2016) Genetic variation in transpiration efficiency and relationships between whole plant and leaf gas exchange measurements in Saccharum spp. and related germplasm. J Exp Bot 67:861–871. https://doi.org/10.1093/jxb/erv505

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Chang 7:788–792. https://doi.org/10.1038/nclimate3410

    Article  Google Scholar 

  • Jakku E, Thorburn PJ (2010) A conceptual framework for guiding the participatory development of agricultural decision support systems. Agric Syst 103:675–682. https://doi.org/10.1016/J.AGSY.2010.08.007

    Article  Google Scholar 

  • Jintrawet A, Prammaneem P (2005) Simulating the impact of climate change scenarios on sugarcane production systems in Thailand. Proc Int Soc Sugar Cane Technol 25:64–68

    Google Scholar 

  • Jones CA, Kiniry JR (1986) CERES-maize: a simulation model of maize growth and development. Texas A&M University Press, College Station

    Google Scholar 

  • Jones MR, Singels A (2015) Analysing yield trends in the South African sugar industry. Agric Syst 141:24–35. https://doi.org/10.1016/j.agsy.2015.09.004

    Article  Google Scholar 

  • Jones MR, Singels A (2019) Refining the Canegro model for improved simulation of climate change impacts on sugarcane. Eur J Agron 100:76–86. https://doi.org/10.1016/j.eja.2017.12.009

    Article  Google Scholar 

  • Jones CA, Wegener MK, Russel JS (1989) AUSCANE – simulation of Australian sugarcane with EPIC, Tropical agronomy technical paper no. 29. CSIRO Division of Tropical Crops and Pastures, Brisbane

    Google Scholar 

  • Jones MR, Singels A, Thornburn P et al (2014) Evaluation of the DSSAT-Canegro model for simulating climate change impacts at sites in seven countries. Proc S Afr Sugar Technol Assoc 87:323–329. https://doi.org/10.1007/BF02722738

    Article  Google Scholar 

  • Jones MR, Singels A, Ruane AC (2015) Simulated impacts of climate change on water use and yield of irrigated sugarcane in South Africa. Agric Syst 139:260–270. https://doi.org/10.1016/j.agsy.2015.07.007

    Article  Google Scholar 

  • Kandulu J, Thorburn P, Biggs J, Verburg K (2018) Estimating economic and environmental trade-offs of managing nitrogen in Australian sugarcane systems taking agronomic risk into account. J Environ Manag 223:264–274. https://doi.org/10.1016/j.jenvman.2018.06.023

    Article  CAS  Google Scholar 

  • Keating BA, Verburg K, Huth NI, Robertson MJ (1997) Nitrogen management in intensive agriculture: sugarcane in Australia. In: Keating BA, Wilson JR (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 20–23

    Google Scholar 

  • Keating BA, Robertson MJ, Muchow RC, Huth NI (1999) Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crop Res 61:253–271. https://doi.org/10.1016/S0378-4290(98)00167-1

    Article  Google Scholar 

  • Keating BA, Carberry PS, Hammer GL et al (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288. https://doi.org/10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  • Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 31:36–43. https://doi.org/10.1016/J.PBI.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  • Kingston G (2002) Recognising the impact of climate on CCS of sugarcane across tropical and sub-tropical regions of the Australian sugar industry. Proc Aust Soc Sugar Cane Technol 24 (CD-ROM)

    Google Scholar 

  • Kiniry JR, Williams JR, Gassman PW, Debaeke P (1992) A general, process-oriented model for two competing plant species. Trans ASAE 35:801–810. https://doi.org/10.13031/2013.28665

    Article  Google Scholar 

  • Knox JW, Rodríguez Díaz JA, Nixon DJ, Mkhwanazi M (2010) A preliminary assessment of climate change impacts on sugarcane in Swaziland. Agric Syst 103:63–72. https://doi.org/10.1016/j.agsy.2009.09.002

    Article  Google Scholar 

  • Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ Qual 32:247–268. https://doi.org/10.2134/jeq2003.2470

    Article  CAS  PubMed  Google Scholar 

  • Kunz R, Schulze R, Mabhaudhi T, Mokonoto O (2014) Modelling the potential impacts of climate change on yield and water use of sugarcane and sugar beet: preliminary results based on the AquaCrop model. Proc S Afr Sugar Technol Assoc 87:285–289

    Google Scholar 

  • Laclau PB, Laclau JP (2009) Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crop Res 114:351–360. https://doi.org/10.1016/j.fcr.2009.09.004

    Article  Google Scholar 

  • Lakshmanan P, Robinson N (2014) Stress physiology: abiotic stresses. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 411–434

    Google Scholar 

  • Leal DPV (2016) Parametrização do modelo CANEGRO (DSSAT) e caracterização biométrica de oito variedades de cana-de-açúcar irrigadas por gotejamento. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, Brasil [In Portuguese]

    Google Scholar 

  • Linnenluecke MK, Nucifora N, Thompson N (2018) Implications of climate change for the sugarcane industry. Wiley Interdiscip Rev Clim Chang 9:1–34. https://doi.org/10.1002/wcc.498

    Article  Google Scholar 

  • Linnenluecke MK, Zhou C, Smith T et al (2019) The impact of climate change on the Australian sugarcane industry. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.118974

  • Lisson SN, Robertson MJ, Keating BA, Muchow RC (2000) Modelling sugarcane production systems II: analysis of system performance and methodology issues. Field Crop Res 68:31–48

    Google Scholar 

  • Lisson S, Brennan L, Bristow K et al (2003) DAM EA$Y—software for assessing the costs and benefits of on-farm water storage based production systems. Agric Syst 76:19–38. https://doi.org/10.1016/S0308-521X(02)00112-9

    Article  Google Scholar 

  • Lisson SN, Inman-Bamber NG, Robertson MJ, Keating BA (2005) The historical and future contribution of crop physiology and modelling research to sugarcane production systems. Field Crop Res 92:321–335. https://doi.org/10.1016/j.fcr.2005.01.010

    Article  Google Scholar 

  • Liu DL, Allsop PG (1996) QCANE and armyworms: to spray or no to spray, that is the question. Proc Aust Soc Sugar Cane Technol 18:106–112

    Google Scholar 

  • Liu DL, Bull TA (2001) Simulation of biomass and sugar accumulation in sugarcane using a process-based model. Ecol Model 144:181–211. https://doi.org/10.1016/S0304-3800(01)00372-6

    Article  CAS  Google Scholar 

  • Liu DL, Kingston G (1994) QCANE: a simulation model of sugarcane growth and sugar accumulation. In: Robertson MJ (ed) Research and modeling approaches to assess sugarcane production opportunities and constraints. Workshop Proceedings University of Queensland, St. Lucia, p 144

    Google Scholar 

  • Lobell DB, Asseng S (2017) Comparing estimates of climate change impacts from process-based and statistical crop models. Environ Res Lett 12:1–12. https://doi.org/10.1088/1748-9326/015001

    Article  Google Scholar 

  • Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour 34:179–204. https://doi.org/10.1146/annurev.environ.041008.093740

    Article  Google Scholar 

  • Lonsdale JE, Gosnell JM (1976) Growth and quality of four sugarcane varieties as influenced by age and season. Proc S Afr Sugar Technol Assoc 50:82–86

    Google Scholar 

  • Lumsden TG, Lecler NL, Schulze RE, S African Sugar Technologists Assoc SASTA (1998) Simulation of sugarcane yield at the scale of a mill supply area. Proc S Afr Sugar Technol Assoc 72:12–17

    Google Scholar 

  • Machado EC (1981) Um modelo matemático-fisiológico para simular o acúmulo de matéria seca na cultura de cana-de-açúcar (Saccharum spp.). Universidade de Campinas, Campinas, Brasil [in Portuguese]

    Google Scholar 

  • Mallawaarachchi T, Quiggin J (2001) Modelling socially optimal land allocations for sugar cane growing in North Queensland: a linked mathematical programming and choice modelling study. Aust J Agric Resour Econ 45:383–409. https://doi.org/10.1111/1467-8489.00149

    Article  Google Scholar 

  • Mangelsdorf AJ (1950) Sugar-cane—as seen from Hawaii. Econ Bot 4:150–176. https://doi.org/10.1007/bf02873319

    Article  Google Scholar 

  • Marchiori PER, Machado EC, Sales CRG et al (2017) Physiological plasticity is important for maintaining sugarcane growth under water deficit. Front Plant Sci 8:1–12. https://doi.org/10.3389/fpls.2017.02148

    Article  Google Scholar 

  • Marin FR (2017) Tempocampo: a system for operational forecasting of Brazilian sugarcane and soybean yield. In: ASA, CSSA and SSSA international annual meeting. ACS Societies, Tampa, FL, USA

    Google Scholar 

  • Marin FR, Jones JW (2014) Process-based simple model for simulating sugarcane growth and production. Sci Agric 71:1–16

    Google Scholar 

  • Marin FR, Jones JW, Royce F et al (2011) Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane. Agron J 103:304–315. https://doi.org/10.2134/agronj2010.0302

    Article  Google Scholar 

  • Marin FR, Jones JW, Singels A, Royce F, Assad ED, Pellegrino GQ, Justino J (2013) Climate change impacts on sugarcane attainable yield in southern Brazil. Clim Chang 117:227–239. https://doi.org/10.1007/s10584-012-0561-y

    Article  Google Scholar 

  • Marin FR, Thorburn PJ, Costa LG, Otto R (2014) Simulating Long-term effects of trash management on sugarcane yield for Brazilian cropping systems. Sugar Tech 16:164–173. https://doi.org/10.1007/s12355-013-0265-2

    Article  CAS  Google Scholar 

  • Marin FR, Thorburn PJ, Nassif DSP, Costa LG (2015) Sugarcane model intercomparison: structural differences and uncertainties under current and potential future climates. Environ Model Softw 72:372–386. https://doi.org/10.1016/j.envsoft.2015.02.019

    Article  Google Scholar 

  • Marin FR, Martha GB, Cassman KG, Grassini P (2016) Prospects for increasing sugarcane and bioethanol production on existing crop area in Brazil. Bioscience 66:307–316. https://doi.org/10.1093/biosci/biw009

    Article  PubMed  PubMed Central  Google Scholar 

  • Martiné J-F (2003) Modélisation de la production potentielle de la Canne à Sucre en zone tropicale, sous conditions hydriques et thermiques contrastées. Applications du Modèle. Thése de Docteur de l’Institut National Agronomique Paris-Grignon [in French]

    Google Scholar 

  • Martiné J-F (2007) Analysis and forecasting of the sucrose content of sugarcane crops during the harvest period in Reunion Island. Proc Int Soc Sugar Cane Technol 26:607–612

    Google Scholar 

  • Martiné J-F, Siband P, Bonhomme R (1999) Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass. Agronomie 19:3–12. https://doi.org/10.1051/agro:19990101

    Article  Google Scholar 

  • McCown RL, Hammer GL, Hargreaves JNG et al (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst 50:255–271. https://doi.org/10.1016/0308-521X(94)00055-V

    Article  Google Scholar 

  • McDonald L, Lisson SN (2001) The effect of planting and harvest time on sugarcane productivity. In: Proceedings of the 10th Australian agronomy conference. Hobart, Australia

    Google Scholar 

  • McGlinchey MG (1999) Computer crop model applications: developments in Swaziland. Proc S Afr Sugar Technol Assoc 73:35–44

    Google Scholar 

  • McGlinchey MG, Dell MP (2010) Using computer simulation models to aid replant planning and harvest decisions in irrigated sugarcane. Proc Int Soc Sugar Cane Technol 27:1–10

    Google Scholar 

  • McGlinchey MG, Inman-Bamber NG, Culverwell TL (1995) An irrigation scheduling method based on a crop model and an automatic weather station. Proc S Afr Sugar Technol Assoc 69:69–73

    Google Scholar 

  • Meier EA, Thorburn PJ (2016) Long term sugarcane crop residue retention offers limited potential to reduce nitrogen fertilizer rates in Australian wet tropical environments. Front Plant Sci 7:1–14. https://doi.org/10.3389/fpls.2016.01017

    Article  Google Scholar 

  • Meki MN, Kiniry JR, Youkhana AH et al (2015) Two-year growth cycle sugarcane crop parameter attributes and their application in modeling. Agron J 107:1310–1320. https://doi.org/10.2134/agronj14.0588

    Article  Google Scholar 

  • Miguez FE, Zhu X, Humphries S et al (2009) A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus × giganteus: description, parameterization and validation. GCB Bioenergy 1:282–296. https://doi.org/10.1111/j.1757-1707.2009.01019.x

    Article  Google Scholar 

  • Mishra SK, Singh G, Singh K (2017) Sugarcane growth and yield simulation under varying planting dates in sub tropical India. J Agrometeorol 19:200–204

    Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766. https://doi.org/10.2307/2401901

    Article  Google Scholar 

  • Moore PH, Berding N (2014) Flowering. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 379–410

    Google Scholar 

  • Moore PH, Paterson AH, Tew T (2014) Sugarcane: the crop, the plant, and domestication. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 1–17

    Google Scholar 

  • Morel J, Bégué A, Todoroff P et al (2014a) Coupling a sugarcane crop model with the remotely sensed time series of fIPAR to optimise the yield estimation. Eur J Agron 61:60–68. https://doi.org/10.1016/j.eja.2014.08.004

    Article  Google Scholar 

  • Morel J, Todoroff P, Bégué A et al (2014b) Toward a satellite-based system of sugarcane yield estimation and forecasting in smallholder farming conditions: a case study on reunion island. Remote Sens 6:6620–6635. https://doi.org/10.3390/rs6076620

    Article  Google Scholar 

  • Muchow RC, Keating BA (1998) Assessing irrigation requirements in the Ord Sugar Industry using a simulation modelling approach. Aust J Exp Agric 38:345–354. https://doi.org/10.1071/EA98023

    Article  Google Scholar 

  • Muchow RC, Spillman MF, Wood AW, Thomas MR (1994) Radiation interception and biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agric Res 45:37–49. https://doi.org/10.1071/AR9940037

    Article  Google Scholar 

  • Muchow RC, Evensen CI, Osgood RV, Robertson MJ (1997a) Yield accumulation in irrigated sugarcane: II. Utilization of intercepted radiation. Agron J 89:646–652. https://doi.org/10.2134/agronj1997.00021962008900040017x

    Article  Google Scholar 

  • Muchow RC, Robertson MJ, Keating BA (1997b) Limits to Autralian sugar industry: climate and biological factors. In: Keating BA, Wilson J (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 37–54

    Google Scholar 

  • Ngobese I, Ramburan S, Labuschagne M (2018) Quantifying sugarcane cultivar differences in tiller and stalk phenology: identifying traits suited to crop model-assisted breeding. J Crop Improv 32:847–860. https://doi.org/10.1080/15427528.2018.1534762

    Article  Google Scholar 

  • NOOA (2019) Trends in atmospheric carbon dioxide – global greenhouse gas reference network. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. Accessed 26 Jun 2019

  • O’Leary GJ (2000) A review of three sugarcane simulation models with respect to their prediction of sucrose yield. Field Crop Res 68:97–111. https://doi.org/10.1016/S0378-4290(00)00112-X

    Article  Google Scholar 

  • Ojeda JJ, Volenec JJ, Brouder SM et al (2017) Evaluation of Agricultural Production Systems Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments. GCB Bioenergy 9:796–816. https://doi.org/10.1111/gcbb.12384

    Article  Google Scholar 

  • Olivier FC, Singels A (2001) A database of crop water use coefficients for irrigation scheduling of sugarcane. Proc S Afr Sugar Technol Assoc 75:81–83

    Google Scholar 

  • Otto R, Silva AP, Franco HCJ et al (2011) High soil penetration resistance reduces sugarcane root system development. Soil Tillage Res 117:201–210. https://doi.org/10.1016/j.still.2011.10.005

    Article  Google Scholar 

  • Otto R, Castro SAQ, Mariano E et al (2016) Nitrogen use efficiency for sugarcane-biofuel production: what is next? Bioenergy Res 9:1272–1289. https://doi.org/10.1007/s12155-016-9763-x

    Article  CAS  Google Scholar 

  • Pagani V, Stella T, Guarneri T et al (2017) Forecasting sugarcane yields using agro-climatic indicators and Canegro model: a case study in the main production region in Brazil. Agric Syst 154:45–52. https://doi.org/10.1016/j.agsy.2017.03.002

    Article  Google Scholar 

  • Paraskevopoulos AL, Singels A (2014) Integrating soil water monitoring technology and weather based crop modelling to provide improved decision support for sugarcane irrigation management. Comput Electron Agric 105:44–53. https://doi.org/10.1016/j.compag.2014.04.007

    Article  Google Scholar 

  • Paraskevopoulos AL, Singels A, Tweeddle PB, van Heerden PDR (2016) Quantifying the negative impact of lodging on irrigated sugarcane productivity: a crop modelling assessment. Proc S Afr Sugar Technol Assoc 89:154–158

    Google Scholar 

  • Park SE (2008) A review of climate change impact and adaptation assessments on the Australian sugarcane industry. Proc Aust Soc Sugar Cane Technol 30:1–9

    Google Scholar 

  • Park SE, Robertson M, Inman-Bamber NG (2005) Decline in the growth of a sugarcane crop with age under high input conditions. Field Crop Res 92:305–320. https://doi.org/10.1016/j.fcr.2005.01.025

    Article  Google Scholar 

  • Park SE, Howden M, Horan HL (2007) Evaluating the impact of and capacity for adaptation to climate change on sectors in the sugar industry value chain in Australia. Proc Int Soc Sugar Cane Technol 26:312–326

    Google Scholar 

  • Park SE, Webster TJ, Horan HL et al (2010) A legume rotation crop lessens the need for nitrogen fertiliser throughout the sugarcane cropping cycle. Field Crop Res 119:331–341. https://doi.org/10.1016/j.fcr.2010.08.001

    Article  Google Scholar 

  • Peloia PR, Bocca FF, Rodrigues LHA et al (2019) Identification of patterns for increasing production with decision trees in sugarcane mill data. Sci Agric 76:281–289. https://doi.org/10.1590/1678-992x-2017-0239

    Article  Google Scholar 

  • Piewthongngam K, Pathumnakul S, Setthanan K (2009) Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry. Agric Syst 102:58–66. https://doi.org/10.1016/j.agsy.2009.07.002

    Article  Google Scholar 

  • Promburom P, Jintrawet A, Ekasingh M (2001) Estimating sugarcane yields with Oy-Thai interface. Proc Int Soc Sugar Cane Technol 24:81–86

    Google Scholar 

  • Qureshi SA, Madramootoo CA, Dodds GT (2002) Evaluation of irrigation schemes for sugarcane in Sindh, Pakistan, using SWAP93. Agric Water Manag 54:37–48. https://doi.org/10.1016/S0378-3774(01)00142-1

    Article  Google Scholar 

  • Rabbinge R (1993) The ecological background of food production. In: Chadwick D, Marsh J (eds) Crop protection and sustainable agriculture, Ciba found. Wiley, Chichester, pp 2–29

    Google Scholar 

  • Robertson MJ, Wood AW, Muchow RC (1996) Growth of sugarcane under high input conditions in tropical Australia, I. Radiation use, biomass accumulation and partitioning. Field Crop Res 48:11–25. https://doi.org/10.1016/S0378-4290(96)00043-3

    Article  Google Scholar 

  • Robertson MJ, Inman-Bamber NG, Muchow RC (1997) Opportunities for improving the use of limited water by the sugarcane crop. In: Keating BA, Wilson J (eds) Intensive sugarcane production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 287–304

    Google Scholar 

  • Robertson MJ, Bonnett GD, Highes RM et al (1998) Temperature and leaf area expansion of sugarcane: integration of controlled-environment, field and model studies. Aust J Plant Physiol 25:819–828

    Google Scholar 

  • Robertson MJ, Inman-Bamber NG, Muchow RC, Wood AW (1999a) Physiology and productivity of sugarcane with early and mid-season water deficit. Field Crop Res 64:211–227. https://doi.org/10.1016/S0378-4290(99)00042-8

    Article  Google Scholar 

  • Robertson MJ, Muchow RC, Donaldson RA et al (1999b) Estimating the risk associated with drying-off strategies for irrigated sugarcane before harvest. Aust J Agric Res 50:65–77

    Google Scholar 

  • Robinson N, Brackin R, Vinall K et al (2011) Nitrate paradigm does not hold up for sugarcane. PLoS One 6:e19045. https://doi.org/10.1371/journal.pone.0019045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostron H (1974) Some effects of environment, age and growth regulating compounds on the growth, yield and quality of sugarcane in Southern Africa. University of Natal, Pietermaritzburg

    Google Scholar 

  • Ruan H, Feng P, Wang B et al (2018) Future climate change projects positive impacts on sugarcane productivity in southern China. Eur J Agron 96:108–119. https://doi.org/10.1016/j.eja.2018.03.007

    Article  Google Scholar 

  • Saeki T (1963) Light relations in plant communities. In: Evans LT (ed) Environmental control of plant growth. Academic Press, New York, pp 79–84

    Google Scholar 

  • Sage RF, Peixoto MM, Sage TL (2014) Photosynthesis in sugarcane. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 121–154

    Google Scholar 

  • Saliendra NZ, Meinzer FC (1992) Genotypic, developmental and drought-induced differences in root hydraulic conductance of contrasting sugarcane cultivars. J Exp Bot 43:1209–1217. https://doi.org/10.1093/jxb/43.9.1209

    Article  Google Scholar 

  • Scarpare FV (2011) Simulação do crescimento da cana-de-açúcar pelo modelo agrohidrológico SWAP/WOFOST. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, Brasil [In Portuguese]

    Google Scholar 

  • Scarpare FV, Stockle CO, Nelson RL et al (2018) Sugarcane CropSyst assessment under Brazilian environmental conditions. In: AGU fall meeting abstracts. American Geophysical Union, Washington

    Google Scholar 

  • Sentelhas PC, Pereira AB (2019) El Niño–Southern oscillation and its impacts on local climate and sugarcane yield in Brazil. Sugar Tech 21:976–985. https://doi.org/10.1007/s12355-019-00725-w

    Article  Google Scholar 

  • Sexton J, Inman-Bamber NG, Everingham Y et al (2014) Detailed trait characterisation is needed for simulation of cultivar responses to water stress. Proc Aust Soc Sugar Cane Technol 36:82–92

    Google Scholar 

  • Sinclair TR, Muchow RC (1999) Radiation use efficiency. In: Sparks DL (ed) Advances in agronomy, 65th edn. Academic, San Diego, pp 215–265

    Google Scholar 

  • Sinclair TR, Gilbert RA, Perdomo RE et al (2004) Sugarcane leaf area development under field conditions in Florida, USA. Field Crop Res 88:171–178. https://doi.org/10.1016/j.fcr.2003.12.005

    Article  Google Scholar 

  • Singels A (2007) A new approach to implementing computer-based decision support for sugarcane farmers and extension staff: the case of My CANESIM. Proc Int Soc Sugar Cane Technol 26:211–219

    Google Scholar 

  • Singels A (2014) Crop models. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 541–577

    Google Scholar 

  • Singels A, Bezuidenhout CN (2002) A new method of simulating dry matter partitioning in the Canegro sugarcane model. Field Crop Res 78:151–164. https://doi.org/10.1016/S0378-4290(02)00118-1

    Article  Google Scholar 

  • Singels A, Inman-Bamber NG (2011) Modelling genetic and environmental control of biomass partitioning at plant and phytomer level of sugarcane grown in controlled environments. Crop Pasture Sci 62:66–81. https://doi.org/10.1071/CP10182

    Article  Google Scholar 

  • Singels A, Smit MA (2009) Sugarcane response to row spacing-induced competition for light. Field Crop Res 113:149–155. https://doi.org/10.1016/j.fcr.2009.04.015

    Article  Google Scholar 

  • Singels A, Smith MT (2006) Provision of irrigation scheduling advice to small scale sugarcane farmers using a web-based crop model and cellular technology: a south African case study. Irrig Drain 55:363–372. https://doi.org/10.1002/ird.231

    Article  Google Scholar 

  • Singels A, Bezuidenhout CN, Smith EJ (1999) Evaluation strategies for scheduling supplementary irrigation of sugarcane in South Africa. Proc Aust Soc Sugar Cane Technol 21:219–226

    Google Scholar 

  • Singels A, Jones M, van den Berg M (2008) DSSAT v4.5 Canegro sugarcane plant module: scientific documentation. S Afr Sugarcane Res Inst (Mount Edgecombe) 34

    Google Scholar 

  • Singels A, Jones MR, Porter CH (2010a) The DSSAT4.5 Canegro model: a useful decision support tool for research and management of sugarcane production. Proc Int Soc Sugar Cane Technol 27:1–5

    Google Scholar 

  • Singels A, van den Berg M, Smit MA et al (2010b) Modelling water uptake, growth and sucrose accumulation of sugarcane subjected to water stress. Field Crop Res 117:59–69. https://doi.org/10.1016/j.fcr.2010.02.003

    Article  Google Scholar 

  • Singels A, Jones M, Marin FR et al (2014) Predicting climate change impacts on sugarcane production at sites in Australia, Brazil and South Africa using the Canegro model. Sugar Tech 16:347–355. https://doi.org/10.1007/s12355-013-0274-1

    Article  Google Scholar 

  • Singels A, Jones MR, van der Laan M (2016) Modelling impacts of stomatal drought sensitivity and root growth rate on sugarcane yield. In: International crop modelling symposium. MACSUR & AgMIP, Berlin, pp 392–393

    Google Scholar 

  • Singels A, Jones MR, Lumsden TG (2018) Sugarcane productivity and water use in South Africa under a future climate: what can we expect? Proc S Afr Sugar Technol Assoc 91:57–61

    Google Scholar 

  • Singels A, Paraskevopoulos AL, Mashabela ML (2019) Farm level decision support for sugarcane irrigation management during drought. Agric Water Manag 222:274–285. https://doi.org/10.1016/j.agwat.2019.05.048

    Article  Google Scholar 

  • Singh G, Chapman LS, Jackson PA, Lawn R (2002) Lodging reduces sucrose accumulation of sugarcane in the wet and dry tropics. Aust J Agric Res 53:1183–1195

    CAS  Google Scholar 

  • Skocaj DM, Everingham YL, Schroeder BL (2013) Nitrogen management guidelines for sugarcane production in Australia: can these be modified for wet tropical conditions using seasonal climate forecasting? Springer Sci Rev 1:51–71. https://doi.org/10.1007/s40362-013-0004-9

    Article  Google Scholar 

  • Smit MA (2010) Characterising the factors that affect germination and emergence in sugarcane. Proc S Afr Sugar Technol Assoc 83:230–234

    Google Scholar 

  • Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field Crop Res 98:91–97. https://doi.org/10.1016/j.fcr.2005.12.009

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron J 101:426–437. https://doi.org/10.2134/agronj2008.0139s

    Article  Google Scholar 

  • Stewart LK, Charlesworth PB, Bristow KL, Thorburn PJ (2006) Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agric Water Manag 81:315–334. https://doi.org/10.1016/j.agwat.2005.05.002

    Article  Google Scholar 

  • Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J Agron 18:289–307. https://doi.org/10.1016/S1161-0301(02)00109-0

    Article  Google Scholar 

  • Stoeckl N, Inman-Bamber NG (2003) Value of irrigation water with uncertain future rain: a simulation case study of sugarcane irrigation in northern Australia. Water Resour Res 39:1–7. https://doi.org/10.1029/2003WR002054

    Article  Google Scholar 

  • Stokes CJ, Inman-Bamber NG, Everingham YL, Sexton J (2016) Measuring and modelling CO2 effects on sugarcane. Environ Model Softw 78:68–78. https://doi.org/10.1016/j.envsoft.2015.11.022

    Article  Google Scholar 

  • Suguitani C (2006) Entendendo o crescimento e produção da cana de açúcar: avaliação do modelo Mosicas. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba, Brasil [In Portuguese]

    Google Scholar 

  • Tatsch JD, Bindi M, Moriondo M (2009) A preliminary evaluation of the Cropsyst model for sugarcane in the southeast of Brazil. In: Bind M, Brandani G, Dibari C et al (eds) Impact of climate change on agricultural and natural ecosystems. Firenze University, Firenze, pp 75–84

    Google Scholar 

  • Thompson GD (1976) Water use by sugarcane. S Afr Sugar J 60:593–600. and 627–635

    Google Scholar 

  • Thompson GD (1978) The production of biomass by sugarcane. Proc S Afr Sugar Technol Assoc 52:180–187

    Google Scholar 

  • Thorburn PJ, Probert M, Lisson S et al (1999) Impacts of trash retention on soil nitrogen and water: an example from the Australian sugarcane industry. Proc S Afr Sugar Technol Assoc 73:75–79

    Google Scholar 

  • Thorburn PJ, Biggs JS, Keating BA et al (2001a) Nitrate in groundwaters in the Australian sugar industry. Proc Int Soc Sugar Cane Technol 24:131–134

    Google Scholar 

  • Thorburn PJ, Van Antwerpen R, Meyer JH et al (2001b) Impact of trash blanketing on soil nitrogen fertility: Australian and South African experience. Proc Int Soc Sugar Cane Technol 24:33–39

    Google Scholar 

  • Thorburn PJ, Park SE, Biggs IM (2003) Nitrogen fertiliser management in the Australia sugar industry: strategic opportunities for improved efficiency. Proc Aust Soc Sugar Cane Technol 25:1–12

    Google Scholar 

  • Thorburn PJ, Horan HL, Biggs JS (2004) The impact of trash management on sugarcane production and nitrogen management: a simulation study. Proc Aust Soc Sugar Cane Technol 26:1–12

    Google Scholar 

  • Thorburn PJ, Meier EA, Probert ME (2005) Modelling nitrogen dynamics in sugarcane systems: recent advances and applications. Field Crop Res 92:337–351. https://doi.org/10.1016/j.fcr.2005.01.016

    Article  Google Scholar 

  • Thorburn PJ, Biggs JS, Collins K, Probert ME (2010) Using the APSIM model to estimate nitrous oxide emissions from diverse Australian sugarcane production systems. Agric Ecosyst Environ 136:343–350. https://doi.org/10.1016/j.agee.2009.12.014

    Article  CAS  Google Scholar 

  • Thorburn PJ, Biggs JS, Attard SJ, Kemei J (2011) Environmental impacts of irrigated sugarcane production: nitrogen lost through runoff and leaching. Agric Ecosyst Environ 144:1–12. https://doi.org/10.1016/j.agee.2011.08.003

    Article  CAS  Google Scholar 

  • Thorburn PJ, Biggs J, Jones MR et al (2014) Evaluation of the APSIM-Sugar model for simulation sugarcane yield at sites in seven countries: initial results. Proc S Afr Sugar Technol Assoc 87:318–322

    Google Scholar 

  • Thorburn PJ, Biggs JS, Palmer J et al (2017) Prioritizing crop management to increase nitrogen use efficiency in Australian sugarcane crops. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.2017.01504

    Article  Google Scholar 

  • Thorburn PJ, Biggs JS, Skocaj D et al (2018) Crop size and sugarcane nitrogen fertiliser requirements: is there a link? Proc Aust Soc Sugar Cane Technol 40:210–218

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55. https://doi.org/10.2307/210739

    Article  Google Scholar 

  • Valade A, Vuichard N, Ciais P, Ruget F, Viovy N, Gabrielle B, Huth N, Martiné J-F (2014) ORCHIDEE-STICS, a process-based model of sugarcane biomass production: calibration of model parameters governing phenology. GCB Bioenergy 6:606–620. https://doi.org/10.1111/gcbb.12074

    Article  Google Scholar 

  • Van Antwerpen R, Thorburn PJ, Horan HL et al (2002) The impact of trashing on soil carbon and nitrogen: II: implications for sugarcane production in South Africa. Proc S Afr Sugar Technol Assoc 76:269–280

    Google Scholar 

  • van Dam JC, Groenendijk P, Hendriks RFA, Kroes JG (2008) Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone J 7:640–653. https://doi.org/10.2136/vzj2007.0060

    Article  Google Scholar 

  • van den Berg M, Singels A (2013) Modelling and monitoring for strategic yield gap diagnosis in the south African sugar belt. Field Crop Res 143:143–150. https://doi.org/10.1016/j.fcr.2012.10.009

    Article  Google Scholar 

  • van den Berg M, Burrough PA, Driessen PM (2000) Uncertainties in the appraisal of water availability and consequences for simulated sugarcane yield potentials in Sao Paulo state, Brazil. Agric Ecosyst Environ 81:43–55. https://doi.org/10.1016/S0167-8809(00)00167-5

    Article  Google Scholar 

  • van der Laan M, Miles N, Annandale JG, du Preez CC (2011) Identification of opportunities for improved nitrogen management in sugarcane cropping systems using the newly developed Canegro-N model. Nutr Cycl Agroecosyst 90:391–404. https://doi.org/10.1007/s10705-011-9440-6

    Article  Google Scholar 

  • van Heerden PDR, Donaldson RA, Watt DA, Singels A (2010) Biomass accumulation in sugarcane: unravelling the factors underpinning reduced growth phenomena. J Exp Bot 61:2877–2887. https://doi.org/10.1093/jxb/erq144

    Article  CAS  PubMed  Google Scholar 

  • van Heerden PDR, Singels A, Paraskevopoulos A, Rossler R (2015) Negative effects of lodging on irrigated sugarcane productivity – an experimental and crop modelling assessment. Field Crop Res 180:135–142. https://doi.org/10.1016/j.fcr.2015.05.019

    Article  Google Scholar 

  • van Ittersum MK, Rabbinge R (1997) Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crop Res 52:197–208

    Google Scholar 

  • van Ittersum MK, Cassman KG, Grassini P et al (2013) Yield gap analysis with local to global relevance—a review. Field Crop Res 143:4–17. https://doi.org/10.1016/j.fcr.2012.09.009

    Article  Google Scholar 

  • van Wart J, van Bussel LGJ, Wolf J et al (2013) Use of agro-climatic zones to upscale simulated crop yield potential. Field Crop Res 143:44–55. https://doi.org/10.1016/j.fcr.2012.11.023

    Article  Google Scholar 

  • Villegas FD, Daza OH, Jones JW, Royce FS (2005) CASUPRO: an industry-driven sugarcane model. In: ASAE annual international meeting. Presented at the Transactions of American Society of Agricultural and Biological Engineer, Tampa

    Google Scholar 

  • Vu JCV, Allen LH (2009a) Stem juice production of the C4 sugarcane (Saccharum officinarium) is enhanced by growth at double-ambient CO2 and high temperature. J Plant Physiol 166:1141–1151. https://doi.org/10.1016/J.JPLPH.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  • Vu JCV, Allen LH (2009b) Growth at elevated CO2 delays the adverse effects of drought stress on leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116. https://doi.org/10.1016/J.JPLPH.2008.02.009

    Article  CAS  PubMed  Google Scholar 

  • Vu JCV, Allen LH, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131. https://doi.org/10.1016/J.PLANTSCI.2006.03.003

    Article  CAS  Google Scholar 

  • Walker NJ, Schulze RE (2010) Simulations of rainfed and irrigated sugarcane yields at the scale of mill supply areas in South Africa with the APSIM Model: a verification analysis and study of sensitivities of yields to scenarios of climate change. In: Schulze RE (ed) Climate change and the South African sugarcane sector: a 2010 perspective. University of KwaZulu-Natal, School of Bioresources Engineering and Environmental Hydrology, Pietermaritzburg, pp 83–104

    Google Scholar 

  • Wallach D (2006) The two forms of crop models. In: Wallach D, Makowski D, Jones JW (eds) Working with dynamic crop models, 1st edn. Elsevier, Amsterdam, pp 3–10

    Google Scholar 

  • Wang E, Martre P, Zhao Z et al (2017) The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat Plants 3:1–11. https://doi.org/10.1038/nplants.2017.102

    Article  Google Scholar 

  • Wang E, Attard SJ, Everingham YL et al (2018a) Smarter irrigation management in the sugarcane farming system using internet of things. Proc Aust Soc Sugar Cane Technol 40:14

    Google Scholar 

  • Wang N, Wang E, Wang J et al (2018b) Modelling maize phenology, biomass growth and yield under contrasting temperature conditions. Agric For Meteorol 250–251:319–329. https://doi.org/10.1016/J.AGRFORMET.2018.01.005

    Article  Google Scholar 

  • Webb WA, Inman-Bamber NG, Mock O (2006) Participatory irrigation research and scheduling in the Ord: extension. Proc Aust Soc Sugar Cane Technol 28:155–163

    Google Scholar 

  • Webster AJA, Thorburn PJB, Roebeling PCC et al (2009) The expected impact of climate change on nitrogen losses from wet tropical sugarcane production in the Great Barrier Reef region. Mar Freshw Res 60:1159–1164

    CAS  Google Scholar 

  • Yang S, Chen J (1980) Germination response of sugarcane cultivars. Proc Int Soc Sugar Cane Technol 17:30–37

    Google Scholar 

  • Zhao P, Jackson PA, Basnayake J et al (2017a) Genetic variation in sugarcane for leaf functional traits and relationships with cane yield, in environments with varying water stress. Field Crop Res 213:143–153. https://doi.org/10.1016/j.fcr.2017.08.004

    Article  Google Scholar 

  • Zhao Z, Verburg K, Huth N (2017b) Modelling sugarcane nitrogen uptake patterns to inform design of controlled release fertiliser for synchrony of N supply and demand. Field Crop Res 213:51–64. https://doi.org/10.1016/j.fcr.2017.08.001

    Article  Google Scholar 

  • Zu Q, Mi C, Liu DL et al (2018) Spatio-temporal distribution of sugarcane potential yields and yield gaps in Southern China. Eur J Agron 92:72–83. https://doi.org/10.1016/j.eja.2017.10.005

    Article  Google Scholar 

Download references

Acknowledgments

This contribution was not funded by any institution. However, the first author (HBD) is truly grateful to the São Paulo Research Foundation (FAPESP), which facilitated his studies in sugarcane agrometeorology, physiology, and modeling in the past few years through the grants #2014/05173-3, #2016/11170-2, and #2017/24424-5.

Climate data used in Fig. 8.2 were obtained from the NASA Langley Research Center (LaRC) POWER Project funded through the NASA Earth Science/Applied Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Boriolo Dias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias, H.B., Inman-Bamber, G. (2020). Sugarcane: Contribution of Process-Based Models for Understanding and Mitigating Impacts of Climate Variability and Change on Production. In: Ahmed, M. (eds) Systems Modeling. Springer, Singapore. https://doi.org/10.1007/978-981-15-4728-7_8

Download citation

Publish with us

Policies and ethics