Skip to main content

Single Cell Sequencing: A New Dimension in Cancer Diagnosis and Treatment

  • Chapter
  • First Online:
Single-cell Sequencing and Methylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1255))

Abstract

Cancer is one of the leading causes of death worldwide and well known for its complexity. Cancer cells within the same tumor or from different tumors are highly heterogeneous. Furthermore, stromal and immune cells within tumor microenvironment interact with cancer cells to play important roles in how tumors progress and respond to different treatments. Recent advances in single cell technologies, especially massively parallel single cell sequencing, have made it possible to analyze cancer cells and cells in its tumor microenvironment in parallel with unprecedented high resolution. In this chapter, we will review recent developments in single cell sequencing technologies and their applications in cancer research. We will also explain how insights generated from single cell sequencing can be used to develop novel diagnostic and therapeutic approaches to conquer cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  2. Pabani A, Butts CA (2018) Current landscape of immunotherapy for the treatment of metastatic non-small-cell lung cancer. Curr Oncol 25:S94–S102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kobayashi S et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  4. Balak MN et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501

    Article  CAS  PubMed  Google Scholar 

  5. Yamaguchi F et al (2014) Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: a report of three cases. Oncol Lett 7:357–360

    Article  PubMed  Google Scholar 

  6. Thress KS et al (2015) Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 2018(21):560–562

    Article  CAS  Google Scholar 

  7. Wu S-G, Shih J-Y (2018) Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer 17:38–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Martinez P, Peters S, Stammers T, Soria J-C (2019) Immunotherapy for the first-line treatment of patients with metastatic non-small cell lung cancer. Clin Cancer Res 25:2691–2698

    Article  CAS  PubMed  Google Scholar 

  9. Singh SS, Dahal A, Shrestha L, Jois SD (2019) Genotype driven therapy for non-small cell lung cancer: resistance, pan inhibitors and immunotherapy. Curr Med Chem 26:1–39

    Article  Google Scholar 

  10. Roviello G, Corona SP, Nesi G, Mini E (2019) Results from a meta-analysis of immune checkpoint inhibitors in first-line renal cancer patients: does PD-L1 matter? Ther Adv Med Oncol 11:1758835919861905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kandoth C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502:333–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15:81–94

    Article  CAS  PubMed  Google Scholar 

  13. Spill F, Reynolds DS, Kamm RD, Zaman MH (2016) Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40:41–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beatty GL, Gladney WL (2015) Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 21:687–692

    Article  CAS  PubMed  Google Scholar 

  15. Hirata E, Sahai E (2017) Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med 7:a026781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68

    Article  CAS  PubMed  Google Scholar 

  17. Cancer Genome Atlas Research Network et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45:1113–1120

    Article  PubMed Central  CAS  Google Scholar 

  18. Bedard PL, Hansen AR, Ratain MJ, Siu LL (2013) Tumour heterogeneity in the clinic. Nature 501:355–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang F et al (2009) mRNA-seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382

    Article  CAS  PubMed  Google Scholar 

  20. Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shinde P et al (2018) Current trends of microfluidic single-cell technologies. Int J Mol Sci 19:3143

    Article  PubMed Central  CAS  Google Scholar 

  22. Borgström E, Paterlini M, Mold JE, Frisen J, Lundeberg J (2017) Comparison of whole genome amplification techniques for human single cell exome sequencing. PLoS One 12:e0171566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C-Z et al (2015) Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat Commun 6:6822–6810

    Article  CAS  PubMed  Google Scholar 

  25. Reece A et al (2016) Microfluidic techniques for high throughput single cell analysis. Curr Opin Biotechnol 40:90–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188

    Article  CAS  PubMed  Google Scholar 

  27. De Luca F et al (2016) Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget 7:26107–26119

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang C-Z et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Macosko EZ et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klein AM et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bose S et al (2015) Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol 16:120–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rosenberg AB et al (2018) Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360:176–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cao J et al (2017) Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  35. McInnes L, Healy J, Melville J (2018) UMAP: Uniform manifold approximation and projection for dimension reduction

    Google Scholar 

  36. Bendall SC et al (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:714–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fiers MWEJ et al (2018) Mapping gene regulatory networks from single-cell omics data. Brief Funct Genomics 17:246–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodell MA, Bodine DM (2019) Single-cell technology meets hematology: introduction to a review series. Blood 133:1387–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science 358:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shalek AK, Benson M (2017) Single-cell analyses to tailor treatments. Sci Transl Med 9:eaan4730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lambrechts D et al (2018) Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med 24:1277–1289

    Article  CAS  PubMed  Google Scholar 

  42. Barry KC et al (2018) A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat Med 24:1178–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng H et al (2018) Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology 68:127–140

    Article  PubMed  Google Scholar 

  44. Savas P et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 2018(24):986–993

    Article  CAS  Google Scholar 

  45. Jerby-Arnon L et al (2018) A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175:984–997.e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alles J et al (2017) Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 15:44–14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Guillaumet-Adkins A et al (2017) Single-cell transcriptome conservation in cryopreserved cells and tissues. Genome Biol 18:45–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Habib N et al (2017) Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 14:955–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lake BB et al (2018) Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 36:70–80

    Article  CAS  PubMed  Google Scholar 

  50. Kim C et al (2018) Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173:879–893.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lake BB et al (2019) A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat Commun 10:2832–2815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol 36:421–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ziegenhain C et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65:631–643.e4

    Article  CAS  PubMed  Google Scholar 

  54. Smith T, Heger A, Sudbery I (2017) UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 27:491–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Freytag S, Tian L, Lonnstedt I, Ng M, Bahlo M (2018) Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data. F1000Res 7:1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Duò A, Robinson MD, Soneson C (2018) A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Res 7:1141

    Article  PubMed  Google Scholar 

  57. Meehan TF et al (2011) Logical development of the cell ontology. BMC Bioinformatics 12:6–12

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abdelaal T et al (2019) A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol 20:194–119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tirosh I et al (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kourelis TV et al (2019) Mass cytometry dissects T cell heterogeneity in the immune tumor microenvironment of common dysproteinemias at diagnosis and after first line therapies. Blood Cancer J 9:72–13

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mansfield AS et al (2016) Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol 27:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crosetto N, Bienko M, van Oudenaarden A (2014) Spatially resolved transcriptomics and beyond. Nat Rev Genet 16:57–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Disclosure: Nan Fang is Founder and Chief Executive Officer of Singleron Biotechnologies, a company that develops single-cell sequencing products. Jue Fan and Jingwen Fang are employees at Singleron Biotechnologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, F., Fan, J., Fang, J., Dalvi, P.S., Odenthal, M., Fang, N. (2020). Single Cell Sequencing: A New Dimension in Cancer Diagnosis and Treatment. In: Yu, B., Zhang, J., Zeng, Y., Li, L., Wang, X. (eds) Single-cell Sequencing and Methylation. Advances in Experimental Medicine and Biology, vol 1255. Springer, Singapore. https://doi.org/10.1007/978-981-15-4494-1_9

Download citation

Publish with us

Policies and ethics