Skip to main content

Biphenyl Moiety for a Solvent Responsive Aryl Gold(I) Isocyanide Complex with Reactivation by Mechanical Grinding

  • Chapter
  • First Online:
Novel Luminescent Crystalline Materials of Gold(I) Complexes with Stimuli-Responsive Properties

Part of the book series: Springer Theses ((Springer Theses))

  • 190 Accesses

Abstract

Luminescent crystalline materials that are sensitive to volatile organic solvents are useful for detection of harmful gases. Although such compounds have been reported, discrimination of various types of volatile organic compounds using one compound remains challenging. Here, it is described that introduction of a biphenyl unit into a gold isocyanide scaffold (denoted complex 3) enables discrimination of various volatile organic compounds by forming 11 solvent-containing crystal structures 3/solvent with different emission properties (emission maxima of 490–580 nm). Mechanical stimulation of 3/solvent affords amorphous 3ground without solvent inclusion. The resulting 3ground can again detect volatile compounds by forming 3/solvent with concomitant emission color changes. A dozen single crystals of 3, which include 11 solvated 3/solvent and one solvent-free 3/none, also are represented. Comparison of various crystallographic parameters of 3/solvent and 3/none with their corresponding optical properties indicates that a combination of various structural properties of 3 affects the optical properties of 3. This study reveals that the introduction of a biphenyl moiety could be a useful design to develop versatile indicators for solvents through the formation of multiple luminescent crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan X, Wang F, Zheng B, Huang F (2012) Stimuli-responsive supramolecular polymeric materials. Chem Soc Rev 41:6042–6065

    Article  CAS  Google Scholar 

  2. (a) Shimizu M, Hiyama T (2010) Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chem Asi J 5:1516–1531. (b) Gierschner J, Park SY (2013) Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology. J Mater Chem C 1:5818–5832. (c) Varughese S (2014) Non-covalent routes to tune the optical properties of molecular materials. J Mater Chem C 2:3499–3516. (d) Yan D, Evans DG (2014) Molecular crystalline materials with tunable luminescent properties: from polymorphs to multi-component solids. Mater Horiz 1:46–57

    Google Scholar 

  3. (a) Wadas TJ, Wang QM, Kim YJ, Flaschenreim C, Blanton TN, Eisenberg R (2004) Vapochromism and its structural basis in a luminescent Pt(II) terpyridine–nicotinamide complex. J Am Chem Soc 126:16841–16849. (b) Grove LJ, Rennekamp JM, Jude H, Connick WB (2004) A new class of platinum(II) vapochromic salts. J Am Chem Soc 126:1594–1595. (d) Malwitz MA, Lim SH, White–Morris RL, Pham DM, Olmstead MM, Balch AL (2012) Crystallization and interconversions of vapor-sensitive, luminescent polymorphs of [(C6H11NC)2AuI](AsF6) and [(C6H11NC)2AuI](PF6). J Am Chem Soc 134:10885–10893. (f) Koshevoy IO, Chang YC, Karttunen AJ, Haukka M, Pakkanen T, Chou PT (2012) Modulation of metallophilic bonds: solvent-induced isomerization and luminescence vapochromism of a polymorphic Au–Cu cluster. J Am Chem Soc 134:6564–6567. (g) Kobayashi A, Komatsu K, Ohara H, Kamada W, Chishina Y, Tsuge K, Chang HC, Kato MM (2013) Photo- and vapor-controlled luminescence of rhombic dicopper(I) complexes containing dimethyl sulfoxide. Inorg Chem 52:13188–13198. (h) Sun H, Liu S, Lin W, Zhang KY, Lv W, Huang X, Huo F, Yang H, Jenkins G, Zhao Q, Huang W (2014) Smart responsive phosphorescent materials for data recording and security protection. Nat Commun 5:3601. (i) Deak A, Jobbagy C, Marsi G, Molnar M, Szakacs Z, Baranyai P (2015) Anion-, solvent-, temperature-, and mechano-responsive photoluminescence in gold(i) diphosphine-based dimers. Chem Eur J 21:11495–11508. (j) Jiang B, Zhang J, Ma JQ, Zheng W, Chen LJ, Sun B, Li C, Hu BW, Tan H, Li X, Yang HB (2016) Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J Am Chem Soc 138:738–741

    Google Scholar 

  4. (a) Kato M (2007) Luminescent platinum complexes having sensing functionalities. Bull Chem Soc Jpn 80:287–294. (b) Zhang X, Li B, Chen Z-H, Chen Z-N (2012) Luminescence vapochromism in solid materials based on metal complexes for detection of volatile organic compounds (VOCs). J Mater Chem 22:11427–11441. (c) Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Rev 112:1105–1125. (d) Wenger OS (2013) Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. Chem Rev 113:3686–3733. (e) Zhou X, Lee S, Xu Z, Yoon J (2015) Recent progress on the development of chemosensors for gases. Chem Rev 115:7944–8000

    Google Scholar 

  5. (a) Fernandez EJ, Lopez-De-Luzuriaga JM, Monge M, Olmos ME, Perez J, Laguna A, Mohamed AA, Fackler JP Jr (2003) {Tl[Au(C6Cl5)2]}n:  a vapochromic complex. J Am Chem Soc 125:2022–2023. (b) Kato M, Kishi S, Wakamatsu Y, Sugi Y, Osamura Y, Koshiyama T, Hasegawa M (2005) Outstanding vapochromism and pH-dependent coloration of dicyano(4,4′-dicarboxy-2,2′-bipyridine)platinum(II) with a three-dimensional network structure. Chem Lett 34:1368–1369. (c) Ni J, Zhang LY, Wen HM, Chen ZN (2009) Luminescence vapochromic properties of a platinum(II) complex with 5,5′-bis(trimethylsilylethynyl)-2,2′-bipyridine. Chem Commun 2009:3801–3803. (d) Takashima Y, Martinez VM, Furukawa S, Kondo M, Shimomura S, Uehara H, Nakahama M, Sugimoto K, Kitagawa S (2011) Molecular decoding using luminescence from an entangled porous framework. Nat Commun 2:168. (e) Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y (2016) Size-discrimination of volatile organic compounds utilizing gallium diiminate by luminescent chromism of crystallization-induced emission via encapsulation-triggered crystal–crystal transition. J Mater Chem C 4:5564–5571

    Google Scholar 

  6. (a) White-Morris RL, Olmstead MM, Balch AL, Elbjeirami O, Omary MA (2003) Orange luminescence and structural properties of three isostructural halocyclohexylisonitrilegold(i) complexes. Inorg Chem 42:6741–6748. (b) Cauteruccio S, Loos A, Bossi A, Blanco Jaimes MC, Dova D, Rominger F, Prager S, Dreuw A, Licandro E, Hashmi AS (2013) Gold(I) complexes of tetrathiaheterohelicene phosphanes. Inorg Chem 52:7995–8004. (c) Fujisawa K, Okuda Y, Izumi Y, Nagamatsu A, Rokusha Y, Sadaike Y, Tsutsumi O (2014) Reversible thermal-mode control of luminescence from liquid-crystalline gold(i) complexes. J Mater Chem C 2:3549–3555

    Google Scholar 

  7. (a) Hau FK, He X, Lam WH, Yam VW (2011) Highly selective ion probe for Al3+ based on Au(I)···Au(I) Interactions in a bis-alkynyl calix[4]arene au(i) isocyanide scaffold. Chem Commun 47:8778–8780. (b) Hau FK, Yam VW (2016) Synthesis and cation-binding studies of gold(i) complexes bearing oligoether isocyanide ligands with ester and amide as linkers. Dalton Trans 45:300–306

    Google Scholar 

  8. (a) Bayon R, Coco S, Espinet P, Fernandez-Mayordomo C, Martin-Alvarez JM (1997) Liquid-crystalline mono- and dinuclear (perhalophenyl)gold(i) isocyanide complexes. Inorg Chem 36:2329–2334. (b) Coco S, Cordovilla C, Espinet P, Martin-Alvarez J, Munoz P (2006) Dinuclear gold(i) isocyanide complexes with luminescent properties, and displaying thermotropic liquid crystalline behavior. Inorg Chem 45:10180–10187

    Google Scholar 

  9. Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M (2008) Reversible mechanochromic luminescence of [(C6F5Au)2(μ-1,4-diisocyanobenzene)]. J Am Chem Soc 130:10044–10045

    Article  CAS  Google Scholar 

  10. (a) Sagara Y, Mutai T, Yoshikawa I, Araki K (2007) Material design for piezochromic luminescence:  hydrogen-bond-directed assemblies of a pyrene derivative. J Am Chem Soc 129:1520–1521. (b) Ooyama Y, Kagawa Y, Fukuoka H, Ito G, Harima Y (2009) Mechanofluorochromism of a series of benzofuro[2,3-c]oxazolo[4,5-a]carbazole-type fluorescent dyes. Eur J Org Chem 2009:5321–5326. (c) Yoon S-J, Chung JW, Gierschner J, Kim KS, Choi M-G, Kim D, Park SY (2010) Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J Am Chem Soc 132:13675–13683. (d) Zhang G, Lu J, Sabat M, Fraser CL (2010) Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone. J Am Chem Soc 132:2160–2162. (e) Sagara Y, Kato T (2011) Brightly tricolored mechanochromic luminescence from a single-luminophore liquid crystal: reversible writing and erasing of images. Angew Chem Int Ed 50:9128–9132. (f) Mizoshita N, Tani T, Inagaki S (2012) Isothermally reversible fluorescence switching of a mechanochromic perylene bisimide dye. Adv Mater 24:3350–3355. (g) Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S (2013) Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J Am Chem Soc 135:10322–10325. (h) Yagai S, Okamura S, Nakano Y, Yamauchi M, Kishikawa K, Karatsu T, Kitamura A, Ueno A, Kuzuhara D, Yamada H, Seki T, Ito H (2014) Design amphiphilic dipolar π-systems for stimuli-responsive luminescent materials using metastable states. Nat Commun 5:4013. (i) Sagara Y, Lavrenova A, Crochet A, Simon Y C, Fromm K M, Weder C (2016) A Thermo- and mechanoresponsive cyano-substituted oligo(p-phenylene vinylene) derivative with five emissive states. Chem Eur J 22:4374–4378

    Google Scholar 

  11. Seki T, Ozaki T, Okura T, Asakura K, Sakon A, Uekusa H, Ito H (2015) Interconvertible Multiple Photoluminescence Color of a Gold(I) Isocyanide Complex in the Solid State: Solvent-Induced Blue-Shifted and Mechano-Responsive Red-Shifted Photoluminescence. Chem Sci 6: 2187–2195

    Google Scholar 

  12. (a) Seki T, Sakurada K, Ito H (2013) Controlling mechano- and seeding-triggered singlecrystal-to-single-crystal phase transition: molecular domino with a disconnection of aurophilic bonds. Angew Chem Int Ed 52:12828–12832. (b) Ito H, Muromoto M, Kurenuma S, Ishizaka S, Kitamura N, Sato H, Seki T (2013) Mechanical stimulation and solid seeding trigger single-crystal-to-single-crystal molecular domino transformations. Nat Commun 4:2009. (c) Seki T, Sakurada K, Ito H (2015) Mismatched changes of the photoluminescence and crystalline structure of a mechanochromic gold(i) isocyanide complex. Chem Commun 51:13933–13936. (d) Yagai S, Seki T, Aonuma H, Kawaguchi K, Karatsu T, Okura T, Sakon A, Uekusa H, Ito H (2016) Mechanochromic luminescence based on crystal-to-crystal transformation mediated by a transient amorphous state. Chem Mater 28:234–241. (e) Seki T, Takamatsu Y, Ito H (2016) A screening approach for the discovery of mechanochromic gold(i) isocyanide complexes with crystal-to-crystal phase transitions. J Am Chem Soc 138:6252–6260

    Google Scholar 

  13. Seki T, Sakurada K, Muromoto M, Ito H (2015) Photoinduced single-crystal-to-single-crystal phase transition and photosalient effect of a gold(i) isocyanide complex with shortening of intermolecular aurophilic bonds. Chem Sci 6:1491–1497

    Article  CAS  Google Scholar 

  14. (a) Shan X-C, Jiang F-L, Chen L, Wu M-Y, Pan J, Wan X-Y, Hong M-C (2013) Using cuprophilicity as a multi-responsive chromophore switching color in response to temperature, mechanical force and solvent vapors. J Mater Chem C 1:4339–4349. (b) Ohba T, Kobayashi A, Chang HC, Kato M (2013) Vapour and mechanically induced chromic behaviour of platinum complexes with a dimer-of-dimer motif and the effects of heterometal ions. Dalton Trans 42:5514–5523. (c) Choi SJ, Kuwabara J, Nishimura Y, Arai T, Kanbara T (2012) Two-step changes in luminescence color of Pt(II) complex bearing an amide moiety by mechano- and vapochromism. Chem Lett 41:65–67. (d) Zhang X, Wang JY, Ni J, Zhang LY, Chen ZN (2012) Vapochromic and mechanochromic phosphorescence materials based on a platinum(ii) complex with 4-trifluoromethylphenylacetylide. Inorg Chem 51:5569–5579

    Google Scholar 

  15. Grein F (2002) Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J Phys Chem A 106:3823–3827

    Article  CAS  Google Scholar 

  16. MacNeil DD, Decken A (1999) 2,2′-dibromobiphenyl. Acta Cryst Sect C 55:628–630

    Article  Google Scholar 

  17. (a) Bhardwaj RM, Price LS, Price SL, Reutzel-Edens SM, Miller GJ, Oswald IDH, Johnston BF, Florence AJ (2013) Exploring the experimental and computed crystal energy landscape of olanzapine. Cryst Growth Des 13:1602–1617. (b) Sekiya R, Yamasaki Y, Tada W, Shio H, Haino T (2014) Guest induced head-to-tail columnar assembly of 5,17-difunctionalized calix[4]arene. CrystEngComm 16:6023–6032. (c) Bērziņš A, Skarbulis E, Actiņš A (2015) Structural characterization and rationalization of formation, stability, and transformations of benperidol solvates. Cryst Growth Des 15:2337–2351

    Google Scholar 

  18. Fan Y, Zhao Y, Ye L, Li B, Yang G, Wang Y (2009) Polymorphs and pseudopolymorphs of N, N-Di(n-butyl)quinacridone: structures and solid-state luminescence properties. Cryst Growth Des 9:1421–1430

    Article  CAS  Google Scholar 

  19. (a) Bernstein J, Davey RJ, Henck JO (1999) Concomitant polymorphs. Angew Chem Int Ed 38: 3440–3461. (b) Braga D, Grepioni F (2000) Organometallic polymorphism and phase transitions. Chem Soc Rev 29:229–238. (c) Blagden N, Davey RJ (2003) Polymorph selection:  challenges for the future? Cryst Growth Des 3:873–885

    Google Scholar 

  20. (a) Balch AL (2004) Polymorphism and luminescent behavior of linear, two-coordinate gold(i) complexes. Gold Bull 37:45–50 (b) Pyykkö P (2004) Theoretical chemistry of gold. Angew Chem Int Ed 43:4412–4456. (c) Katz MJ, Sakai K, Leznoff DB (2008) The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chem Soc Rev 37:1884–1895. (d) Schmidbaur H, Schier A (2008) A briefing on aurophilicity. Chem Soc Rev 37:1931–1951. (e) Balch AL (2009) Dynamic crystals: visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew Chem Int Ed 48:2641–2644. (g) Chen Y, Cheng G, Li K, Shelar DP, Lu W, Che C-M (2014) Phosphorescent polymeric nanomaterials with metallophilic d10···d10 interactions self-assembled from [Au(NHC)2]+ and [M(CN)2]. Chem Sci 5:1348–1353

    Google Scholar 

  21. Seki T, Kurenuma S, Ito H (2013) Luminescence color-tuning through polymorph doping: preparation of a white-emitting solid from a single gold(I)-isocyanide complex by simple precipitation. Chem Eur J 19:16214–16220

    Article  CAS  Google Scholar 

  22. Jong JD, Boyer JH (1972) Photoisomerization of 2-isocyano- and 2, x’-diisocyanobiphenyls in cyclohexane. J Org Chem 37:3571–3577

    Article  Google Scholar 

  23. Krasovskiy A, Malakhov V, Gavryushin A, Knochel P (2006) Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew Chem Int Ed 45:6040–6044

    Article  CAS  Google Scholar 

  24. Sheldrick GM (2013) SHELXL-2013, program for the refinement of crystal structures. University of Göttingen, Göttingen, Germany

    Google Scholar 

  25. Frisch MJ et al (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford CT

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingoo Jin .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jin, M. (2020). Biphenyl Moiety for a Solvent Responsive Aryl Gold(I) Isocyanide Complex with Reactivation by Mechanical Grinding. In: Novel Luminescent Crystalline Materials of Gold(I) Complexes with Stimuli-Responsive Properties. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-4063-9_2

Download citation

Publish with us

Policies and ethics