• Paramartha DuttaEmail author
  • Asit Barman
Part of the Cognitive Intelligence and Robotics book series (CIR)


The definition of the emotions  (Kitayama and Markus in Emotion and Culture: Empirical Studies of Mutual Influence. American Psychological Association, 1994 [1]) is the changes in psychological states that comprise thoughts, physiological changes, feelings, and expressive behaviors to act. The accurate combination of the psychological changes fluctuates from emotion to emotion and it is not necessarily accompanied by behaviors.


  1. 1.
    S.E. Kitayama, H.R.E. Markus, Emotion and Culture: Empirical Studies of Mutual Influence (American Psychological Association, 1994)Google Scholar
  2. 2.
    B. Parkinson, A.H. Fischer, A.S.R. Manstead, Emotion in Social Relations: Cultural, Group, and Interpersonal Processes (Psychology Press, 2005)Google Scholar
  3. 3.
    R. Ekman, What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS) (Oxford University Press, USA, 1997)Google Scholar
  4. 4.
    P. Ekman, W.V. Frisen, Emotion in the Human Face (Prentice Hall, Eagle Woods Cliffs, NJ, 1975)Google Scholar
  5. 5.
    P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression, in Computer Society Conference on Computer Vision and Pattern Recognition-Workshops (IEEE, 2010)Google Scholar
  6. 6.
    M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with gabor wavelets, in Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998. Proceedings (IEEE, 1998), pp. 200–205Google Scholar
  7. 7.
    M.F. Valstar, M. Pantic, Induced disgust, happiness and surprise: an addition to the mmi facial expression database, in Proceedings of International Conference on Language Resources and Evaluation, Workshop on EMOTION (Malta, 2010), pp. 65–70Google Scholar
  8. 8.
    N. Aifanti, C. Papachristou, A. Delopoulos. The mug facial expression database, in 11th International Workshop on Image Analysis for Facial Expression Database (Desenzano, Italy, 2010), pp. 12–14Google Scholar
  9. 9.
    R.W. Picard, R. Picard, Affective Computing, vol. 252 (MIT press Cambridge, 1997)Google Scholar
  10. 10.
    P. Ekman, W.V. Friesen, Facial Action Coding System (1977)Google Scholar
  11. 11.
    K. Mase, Recognition of facial expression from optical flow. IEICE Trans. (E) 74, 3474–3483 (1991)Google Scholar
  12. 12.
    Y. Yaccob, L. Davis, Recognizing facial expressions by spatio-temporal analysis, in Proceedings of the 12th IAPR International Conference on Pattern Recognition, Conference A: Computer Vision & Image Processing, vol. 1 (IEEE, 1994), pp. 747–749Google Scholar
  13. 13.
    M. Rosenblum, Y. Yacoob, L.S. Davis, Human expression recognition from motion using a radial basis function network architecture. IEEE Trans. Neural Netw. 7(5), 1121–1138 (1996)Google Scholar
  14. 14.
    A. Lanitis, C.J. Taylor, T.F. Cootes, Automatic interpretation and coding of face images using flexible models. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 743–756 (1997)CrossRefGoogle Scholar
  15. 15.
    Curtis Padgett and Garrison W Cottrell. A simple neural network models categorical perception of facial expressions, in Proceedings of the Twentieth Annual Cognitive Science Conference (1998), pp. 806–807Google Scholar
  16. 16.
    S. Harnad, Psychophysical and cognitive aspects of categorical perception: a critical overview, in Categorical Perception: The Groundwork of Cognition (Cambridge University Press, 1987), pp. 1–52Google Scholar
  17. 17.
    Z. Zhang, Feature-based facial expression recognition: sensitivity analysis and experiments with a multilayer perceptron. Int. J. Pattern Recogn. Artif. Intell. 13(06), 893–911 (1999)CrossRefGoogle Scholar
  18. 18.
    K. Anderson, P.W. McOwan, A real-time automated system for the recognition of human facial expressions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 96–105 (2006)Google Scholar
  19. 19.
    I. Kotsia, I. Pitas, Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Trans. Image Process. 16(1), 172–187 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Y. Zhang, Q. Ji, Active and dynamic information fusion for facial expression understanding from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 699–714 (2005)CrossRefGoogle Scholar
  21. 21.
    Y.I. Tian, T. Kanade, J.F. Cohn, Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 97–115 (2001)Google Scholar
  22. 22.
    J. Shi, A. Samal, D. Marx, How effective are landmarks and their geometry for face recognition? Comput. Vis. Image Underst. 102(2), 117–133 (2006)CrossRefGoogle Scholar
  23. 23.
    M.F. Valstar, M. Pantic, Biologically versus logic inspired encoding of facial actions and emotions in video, in 2006 IEEE International Conference on Multimedia and Expo (IEEE, 2006), pp. 325–328Google Scholar
  24. 24.
    S. Park, J. Shin, D. Kim, Facial expression analysis with facial expression deformation. In 19th International Conference on Pattern Recognition, 2008. ICPR 2008 (IEEE, 2008), pp. 1–4Google Scholar
  25. 25.
    D. Cai, X. He, Y. Hu, J. Han, T. Huang, Learning a spatially smooth subspace for face recognition, in IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07 (IEEE, 2007), pp. 1–7Google Scholar
  26. 26.
    W. Li, S. Prasad, J.E. Fowler, Hyperspectral image classification using gaussian mixture models and markov random fields. IEEE Geosci. Remote Sens. Lett. 11(1), 153–157 (2014)Google Scholar
  27. 27.
    X. He, M. Ji, H. Bao, Graph embedding with constraints, in IJCAI9, 1065–1070 (2009)Google Scholar
  28. 28.
    A.M. Martínez, Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 748–763 (2002)Google Scholar
  29. 29.
    G. Guo, C.R. Dyer, Learning from examples in the small sample case: face expression recognition. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(3), 477–488 (2005)Google Scholar
  30. 30.
    J. Han, K.-K. Ma, Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image Vis. Comput. 25(9), 1474–1481 (2007)CrossRefGoogle Scholar
  31. 31.
    L. Ma, K. Khorasani, Facial expression recognition using constructive feedforward neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(3), 1588–1595 (2004)Google Scholar
  32. 32.
    A. Majumder, L. Behera, V.K. Subramanian, Local binary pattern based facial expression recognition using self-organizing map, in 2014 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2014), pp. 2375–2382Google Scholar
  33. 33.
    J. Yi, X. Mao, L. Chen, Y. Xue, A. Compare, Facial expression recognition considering individual differences in facial structure and texture. IET Comput. Vis. 8(5), 429–440 (2014)CrossRefGoogle Scholar
  34. 34.
    SL Happy and Aurobinda Routray, Automatic facial expression recognition using features of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Matsugu, K. Mori, Y. Mitari, Y. Kaneda, Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16(5), 555–559 (2003)CrossRefGoogle Scholar
  36. 36.
    H. Boughrara, M. Chtourou, C.B. Amar, L. Chen, Facial expression recognition based on a MLP neural network using constructive training algorithm. Multimedia Tools Appl. 75(2), 709–731 (2016)Google Scholar
  37. 37.
    C. Shan, S. Gong, P.W. McOwan, Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)Google Scholar
  38. 38.
    M. Pardàs, A. Bonafonte, Facial animation parameters extraction and expression recognition using hidden markov models. Signal Process. Image Commun. 17(9), 675–688 (2002)CrossRefGoogle Scholar
  39. 39.
    F. Bourel, C.C. Chibelushi, A.A. Low, Recognition of facial expressions in the presence of occlusion, in BMVC, pp. 1–10 (2001)Google Scholar
  40. 40.
    I. Kotsia, I. Buciu, I. Pitas, An analysis of facial expression recognition under partial facial image occlusion. Image Vis. Comput. 26(7), 1052–1067 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer and Systems SciencesVisva-Bharati UniversitySantiniketanIndia
  2. 2.Department of Computer Science and Engineering and Information TechnologySiliguri Institute of TechnologySiliguriIndia

Personalised recommendations