Summary and Future Prospects

  • Keisuke SugiuraEmail author
Part of the Springer Theses book series (Springer Theses)


We firstly developed a numerical simulation code for rocky body collisions. Then we investigated shapes of asteroids formed by various impacts through numerical simulations. We also analyzed shapes of actual asteroids and compare them with shapes of impact outcomes produced through our simulations. Finally we applied our simulations to the formation of the extremely elongated shape of 1I/‘Oumuamua. In this chapter, we summarize our study. We also state future prospects of our study such as application to other phenomena.


Summary Simulation method for rocky body impacts Asteroid shapes formed through collisions Application 


  1. I. Alduán, M.A. Otaduy, Sph granular flow with friction and cohesion, in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2011)Google Scholar
  2. W. Benz, E. Asphaug, Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995). Scholar
  3. D.T. Britt, D. Yeomans, K. Housen, G. Consolmagno, Asteroid Density, Porosity, and Structure (2002), pp. 485–500Google Scholar
  4. M. Bruck Syal, J. Rovny, J.M. Owen, P.L. Miller, Excavating Stickney crater at Phobos. Geophys. Res. Lett., 43(20), 10,595–10,601 (2016).
  5. M. Carroll, A.C. Holt, Suggested modification of the P-\(\alpha \) model for porous materials. J. Appl. Phys. 43, 759–761 (1972). Scholar
  6. M. Ćuk, 1I/‘Oumuamua as a tidal disruption fragment from a binary star system. Astrophys. J. 852, L15 (2018). Scholar
  7. H. Genda, E. Kokubo, S. Ida, Merging criteria for giant impacts of protoplanets. Astrophys. J. 744, 137 (2012). Scholar
  8. M. Goeritz, T. Kenkmann, K. Wünnemann, S. van Gasselt, Asymmetric structure of lunar impact craters due to oblique impacts? in Lunar and Planetary Science Conference, vol. 40 (2009), p. 2096Google Scholar
  9. G.H. Heiken, D.T. Vaniman, B.M. French, Lunar sourcebook—A user’s guide to the Moon (1991)Google Scholar
  10. W. Herrmann, Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40, 2490–2499 (1969). Scholar
  11. K.R. Housen, K.A. Holsapple, Scale effects in strength-dominated collisions of rocky asteroids. Icarus 142(1), 21–33 (1999).
  12. S. Inutsuka, Reformulation of smoothed particle hydrodynamics with Riemann solver. J. Comput. Phys. 179, 238–267 (2002). Scholar
  13. M. Jutzi, SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015). Scholar
  14. M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015). Scholar
  15. M. Jutzi, W. Benz, P. Michel, Numerical simulations of impacts involving porous bodies. I. Implementing sub-resolution porosity in a 3D SPH hydrocode. Icarus 198, 242–255 (2008).
  16. M. Jutzi, P. Michel, W. Benz, A large crater as a probe of the internal structure of the E-type asteroid Steins. Astron. Astrophys. 509, L2 (2010). Scholar
  17. H. Kobayashi, H. Tanaka, From planetesimal to planet in turbulent disks. II. Formation of gas giant planets. Astrophys. J. 862, 127 (2018).
  18. H. Kobayashi, H. Tanaka, S. Okuzumi, From planetesimals to planets in turbulent protoplanetary disks. I. Onset of runaway growth. Astrophys. J. 817, 105 (2016).
  19. K. Krohn, R. Jaumann, D. Elbeshausen, T. Kneissl, N. Schmedemann, R. Wagner, J. Voigt, K. Otto, K.D. Matz, F. Preusker, T. Roatsch, K. Stephan, C.A. Raymond, C.T. Russell, Asymmetric craters on Vesta: impact on sloping surfaces. Planet. Space Sci. 103, 36–56 (2014). Scholar
  20. K.J. Meech, R. Weryk, M. Micheli, J.T. Kleyna, O.R. Hainaut, R. Jedicke, R.J. Wainscoat, K.C. Chambers, J.V. Keane, A. Petric, L. Denneau, E. Magnier, T. Berger, M.E. Huber, H. Flewelling, C. Waters, E. Schunova-Lilly, S. Chastel, A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–381 (2017). Scholar
  21. P. Michel, D.C. Richardson, Collision and gravitational reaccumulation: possible formation mechanism of the asteroid Itokawa. Astron. Astrophys. 554, L1 (2013). Scholar
  22. T. Michikami, A. Hagermann, H. Miyamoto, S. Miura, J. Haruyama, P. Lykawka, Impact cratering experiments in brittle targets with variable thickness: implications for deep pit craters on Mars. Planet. Space Sci. 96, 71–80 (2014).
  23. D.P. O’Brien, R. Greenberg, The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005). Scholar
  24. R.W. Potter, J.W. Head, D. Guo, J. Liu, L. Xiao, The Apollo peak-ring impact basin: insights into the structure and evolution of the South Pole-Aitken basin. Icarus 306, 139–149 (2018).
  25. S.R. Schwartz, P. Michel, M. Jutzi, S. Marchi, Y. Zhang, D.C. Richardson, Catastrophic disruptions as the origin of bilobate comets. Nat. Astron. 2, 379–382 (2018). Scholar
  26. K. Sugiura, S. Inutsuka, An extension of Godunov SPH: application to negative pressure media. J. Comput. Phys. 308, 171–197 (2016). Scholar
  27. K. Sugiura, S. Inutsuka, An extension of Godunov SPH II: application to elastic dynamics. J. Comput. Phys. 333, 78–103 (2017). Scholar
  28. K.J. Walsh, D.C. Richardson, Binary near-earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006).
  29. K.J. Walsh, D.C. Richardson, P. Michel, Rotational breakup as the origin of small binary asteroids. Nature 454, 188–191 (2008). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Earth-Life Science InstituteTokyo Institute of TechnologyMeguroJapan

Personalised recommendations