Advertisement

Method

  • Keisuke SugiuraEmail author
Chapter
  • 6 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Numerical simulations are the most powerful tool to investigate resultant shapes of asteroids produced through various collisional events. To conduct such numerical simulations, we need knowledge about not only hydrodynamics but also elastic dynamics for intact rocks, fracturing of rocky materials, and friction of completely damaged rocks. In this chapter, we introduce the detailed methods necessary for numerical simulations of asteroidal collisions, i.e., equations for elastic dynamics, discretized equations for smoothed particle hydrodynamics method, equation of states for impact simulations, a model for fracture of rocks, a model for friction of damaged rocks, parallelization of simulation codes, and a time development procedure.

Keywords

Elastic dynamics Smoothed particle hydrodynamics method Fracture model for rocky materials Friction model for granular materials 

References

  1. J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986).  https://doi.org/10.1038/324446a0ADSCrossRefGoogle Scholar
  2. W. Benz, E. Asphaug, Impact simulations with fracture. I. Method and tests. Icarus 107, 98 (1994).  https://doi.org/10.1006/icar.1994.1009ADSCrossRefGoogle Scholar
  3. W. Benz, E. Asphaug, Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995).  https://doi.org/10.1016/0010-4655(94)00176-3ADSCrossRefzbMATHGoogle Scholar
  4. W. Benz, E. Asphaug, Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).  https://doi.org/10.1006/icar.1999.6204ADSCrossRefGoogle Scholar
  5. J. Bonet, T.-S. Lok, Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180(1), 97–115 (1999).  https://doi.org/10.1016/S0045-7825(99)00051-1ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. J.K. Chen, J.E. Beraun, C.J. Jih, An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech. 23, 279–287 (1999).  https://doi.org/10.1007/s004660050409CrossRefzbMATHGoogle Scholar
  7. G.S. Collins, H.J. Melosh, B.A. Ivanov, Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).  https://doi.org/10.1111/j.1945-5100.2004.tb00337.xADSCrossRefGoogle Scholar
  8. H. Genda, E. Kokubo, S. Ida, Merging criteria for giant impacts of protoplanets. Astrophys. J. 744, 137 (2012).  https://doi.org/10.1088/0004-637X/744/2/137ADSCrossRefGoogle Scholar
  9. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977).  https://doi.org/10.1093/mnras/181.3.375ADSCrossRefzbMATHGoogle Scholar
  10. D. Grady, M. Kipp, Continuum modelling of explosive fracture in oil shale. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17(3), 147–157 (1980).  https://doi.org/10.1016/0148-9062(80)91361-3
  11. J.P. Gray, J.J. Monaghan, R.P. Swift, Sph elastic dynamics. Comput. Methods Appl. Mech. Eng. 190(49), 6641–6662 (2001).  https://doi.org/10.1016/S0045-7825(01)00254-7ADSCrossRefzbMATHGoogle Scholar
  12. S. Inutsuka, Reformulation of smoothed particle hydrodynamics with Riemann solver. J. Comput. Phys. 179, 238–267 (2002).  https://doi.org/10.1006/jcph.2002.7053ADSCrossRefzbMATHGoogle Scholar
  13. K. Iwasaki, S.-I. Inutsuka, Smoothed particle magnetohydrodynamics with a riemann solver and the method of characteristics. Mon. Not. R. Astron. Soc. 418(3), 1668–1688 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19588.xADSCrossRefGoogle Scholar
  14. M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, J. Makino, Fdps: a novel framework for developing high-performance particle simulation codes for distributed-memory systems, in Proceedings of the 5th International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing, WOLFHPC ’15, (ACM, New York, NY, USA, 2015), pp. 1:1–1:10 ISBN 978-1-4503-4016-8.  https://doi.org/10.1145/2830018.2830019
  15. M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, J. Makino, Implementation and performance of FDPS: a framework for developing parallel particle simulation codes. Publ. Astron. Soc. Japan 68(4), 24 (2016)CrossRefGoogle Scholar
  16. M. Jutzi, SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).  https://doi.org/10.1016/j.pss.2014.09.012ADSCrossRefGoogle Scholar
  17. M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015).  https://doi.org/10.1126/science.aaa4747ADSCrossRefGoogle Scholar
  18. E. Lajeunesse, J.B. Monnier, G.M. Homsy, Granular slumping on a horizontal surface. Phys. Fluids 17(10), 103302 (2005).  https://doi.org/10.1063/1.2087687ADSCrossRefzbMATHGoogle Scholar
  19. M.A. Lange, T.J. Ahrens, The dynamic tensile strength of ice and ice-silicate mixtures. J. Geophys. Res. 88(B2), 1197–1208 (1983).  https://doi.org/10.1029/JB088iB02p01197ADSCrossRefGoogle Scholar
  20. B. Lawn. Fracture of Brittle Solids. Cambridge Solid State Science Series, 2nd edn. (Cambridge University Press, 1993).  https://doi.org/10.1017/CBO9780511623127
  21. A. Leleu, M. Jutzi, M. Rubin, The peculiar shapes of Saturn’s small inner moons as evidence of mergers of similar-sized moonlets. Nat. Astron. 2, 555–561 (2018).  https://doi.org/10.1038/s41550-018-0471-7ADSCrossRefGoogle Scholar
  22. L.D. Libersky, A.G. Petschek, Smooth particle hydrodynamics with strength of materials, in Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, ed. H.E. Trease, M.F. Fritts, W.P. Crowley, vol. 395 of Lecture Notes in Physics (Berlin Springer Verlag, 1991), pp. 248–257Google Scholar
  23. E.M. Lifshitz, A.M. Kosevich, L.P. Pitaevskii, Chapter ii : the equilibrium of rods and plates. in Theory of Elasticity, 3rd edn, ed. by E. Lifshitz, A. Kosevich, L. Pitaevskii (Butterworth-Heinemann, Oxford, 1986), pp. 38–86. ISBN 978-0-08-057069-3.  https://doi.org/10.1016/B978-0-08-057069-3.50009-7
  24. L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977).  https://doi.org/10.1086/112164ADSCrossRefGoogle Scholar
  25. H.J. Melosh, E.V. Ryan, E. Asphaug, Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res. 97, 14 (1992).  https://doi.org/10.1029/92JE01632CrossRefGoogle Scholar
  26. J.J. Monaghan, An introduction to SPH. Comput. Phys. Commun. 48, 89–96 (1988).  https://doi.org/10.1016/0010-4655(88)90026-4ADSCrossRefzbMATHGoogle Scholar
  27. J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992).  https://doi.org/10.1146/annurev.aa.30.090192.002551ADSCrossRefGoogle Scholar
  28. J.J. Monaghan, SPH without a Tensile Instability. J. Comput. Phys. 159, 290–311 (2000).  https://doi.org/10.1006/jcph.2000.6439ADSCrossRefzbMATHGoogle Scholar
  29. A. Nakamura, A. Fujiwara, Velocity Distribution of Fragments in Collisional Breakup. in IAU Colloq. 126: Origin and Evolution of Interplanetary Dust, vol. 173 of Astrophysics and Space Science Library, ed. by A.C. Levasseur-Regoud, H. Hasegawa (1991), p. 379Google Scholar
  30. J.D. O’Keefe, T.J. Ahrens, Cometary and meteorite swarm impact on planetary surfaces. J. Geophys. Res. 87, 6668–6680 (1982a).  https://doi.org/10.1029/JB087iB08p06668ADSCrossRefGoogle Scholar
  31. J.D. O’Keefe, T.J. Ahrens, The interaction of the Cretaceous/Tertiary Extinction Bolide with the atmosphere, ocean, and solid Earth (1982b).  https://doi.org/10.1130/SPE190
  32. P.W. Randles, L.D. Libersky, Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139(1), 375–408 (1996).  https://doi.org/10.1016/S0045-7825(96)01090-0ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. L.D.G. Sigalotti, H. López, Adaptive Kernel estimation and SPH tensile instability. Comput. Math. Appl 55(1), 23–50 (2008).  https://doi.org/10.1016/j.camwa.2007.03.007MathSciNetCrossRefzbMATHGoogle Scholar
  34. K. Sugiura, S. Inutsuka, An extension of Godunov SPH: application to negative pressure media. J. Comput. Phys. 308, 171–197 (2016).  https://doi.org/10.1016/j.jcp.2015.12.030ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. K. Sugiura, S. Inutsuka, An extension of Godunov SPH II: application to elastic dynamics. J. Comput. Phys. 333, 78–103 (2017).  https://doi.org/10.1016/j.jcp.2016.12.026ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. K. Sugiura, H. Kobayashi, S. Inutsuka, Toward understanding the origin of asteroid geometries. Variety in shapes produced by equal-mass impacts. Astron. Astrophys. 620, A167 (2018).  https://doi.org/10.1051/0004-6361/201833227
  37. J.W. Swegle, D.L. Hicks, S.W. Attaway, Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995).  https://doi.org/10.1006/jcph.1995.1010ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. J.H. Tillotson, Metallic equations of state for hypervelocity impact. General At. Rept. 3216, 1–142 (1962)Google Scholar
  39. B.V. Leer, Towards the ultimate conservative difference scheme. v. a second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979).  https://doi.org/10.1016/0021-9991(79)90145-1
  40. J.B. Walsh, The effect of cracks on the compressibility of rocks. J. Geophys. Res. 70, 381–389 (1965).  https://doi.org/10.1029/JZ070i002p00381ADSCrossRefzbMATHGoogle Scholar
  41. W.A. Weibull, A statistical theory of the strength of materials (transl.). Ingvetenks. Akad. Handl. (Stockholm) 151, 5–45 (1939)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Earth-Life Science InstituteTokyo Institute of TechnologyMeguroJapan

Personalised recommendations