• Keisuke SugiuraEmail author
Part of the Springer Theses book series (Springer Theses)


Numerical simulations are the most powerful tool to investigate resultant shapes of asteroids produced through various collisional events. To conduct such numerical simulations, we need knowledge about not only hydrodynamics but also elastic dynamics for intact rocks, fracturing of rocky materials, and friction of completely damaged rocks. In this chapter, we introduce the detailed methods necessary for numerical simulations of asteroidal collisions, i.e., equations for elastic dynamics, discretized equations for smoothed particle hydrodynamics method, equation of states for impact simulations, a model for fracture of rocks, a model for friction of damaged rocks, parallelization of simulation codes, and a time development procedure.


Elastic dynamics Smoothed particle hydrodynamics method Fracture model for rocky materials Friction model for granular materials 


  1. J. Barnes, P. Hut, A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986). Scholar
  2. W. Benz, E. Asphaug, Impact simulations with fracture. I. Method and tests. Icarus 107, 98 (1994). Scholar
  3. W. Benz, E. Asphaug, Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Commun. 87, 253–265 (1995). Scholar
  4. W. Benz, E. Asphaug, Catastrophic disruptions revisited. Icarus 142, 5–20 (1999). Scholar
  5. J. Bonet, T.-S. Lok, Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput. Methods Appl. Mech. Eng. 180(1), 97–115 (1999). Scholar
  6. J.K. Chen, J.E. Beraun, C.J. Jih, An improvement for tensile instability in smoothed particle hydrodynamics. Comput. Mech. 23, 279–287 (1999). Scholar
  7. G.S. Collins, H.J. Melosh, B.A. Ivanov, Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004). Scholar
  8. H. Genda, E. Kokubo, S. Ida, Merging criteria for giant impacts of protoplanets. Astrophys. J. 744, 137 (2012). Scholar
  9. R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977). Scholar
  10. D. Grady, M. Kipp, Continuum modelling of explosive fracture in oil shale. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17(3), 147–157 (1980).
  11. J.P. Gray, J.J. Monaghan, R.P. Swift, Sph elastic dynamics. Comput. Methods Appl. Mech. Eng. 190(49), 6641–6662 (2001). Scholar
  12. S. Inutsuka, Reformulation of smoothed particle hydrodynamics with Riemann solver. J. Comput. Phys. 179, 238–267 (2002). Scholar
  13. K. Iwasaki, S.-I. Inutsuka, Smoothed particle magnetohydrodynamics with a riemann solver and the method of characteristics. Mon. Not. R. Astron. Soc. 418(3), 1668–1688 (2011). Scholar
  14. M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, J. Makino, Fdps: a novel framework for developing high-performance particle simulation codes for distributed-memory systems, in Proceedings of the 5th International Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing, WOLFHPC ’15, (ACM, New York, NY, USA, 2015), pp. 1:1–1:10 ISBN 978-1-4503-4016-8.
  15. M. Iwasawa, A. Tanikawa, N. Hosono, K. Nitadori, T. Muranushi, J. Makino, Implementation and performance of FDPS: a framework for developing parallel particle simulation codes. Publ. Astron. Soc. Japan 68(4), 24 (2016)CrossRefGoogle Scholar
  16. M. Jutzi, SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015). Scholar
  17. M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015). Scholar
  18. E. Lajeunesse, J.B. Monnier, G.M. Homsy, Granular slumping on a horizontal surface. Phys. Fluids 17(10), 103302 (2005). Scholar
  19. M.A. Lange, T.J. Ahrens, The dynamic tensile strength of ice and ice-silicate mixtures. J. Geophys. Res. 88(B2), 1197–1208 (1983). Scholar
  20. B. Lawn. Fracture of Brittle Solids. Cambridge Solid State Science Series, 2nd edn. (Cambridge University Press, 1993).
  21. A. Leleu, M. Jutzi, M. Rubin, The peculiar shapes of Saturn’s small inner moons as evidence of mergers of similar-sized moonlets. Nat. Astron. 2, 555–561 (2018). Scholar
  22. L.D. Libersky, A.G. Petschek, Smooth particle hydrodynamics with strength of materials, in Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method, ed. H.E. Trease, M.F. Fritts, W.P. Crowley, vol. 395 of Lecture Notes in Physics (Berlin Springer Verlag, 1991), pp. 248–257Google Scholar
  23. E.M. Lifshitz, A.M. Kosevich, L.P. Pitaevskii, Chapter ii : the equilibrium of rods and plates. in Theory of Elasticity, 3rd edn, ed. by E. Lifshitz, A. Kosevich, L. Pitaevskii (Butterworth-Heinemann, Oxford, 1986), pp. 38–86. ISBN 978-0-08-057069-3.
  24. L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977). Scholar
  25. H.J. Melosh, E.V. Ryan, E. Asphaug, Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res. 97, 14 (1992). Scholar
  26. J.J. Monaghan, An introduction to SPH. Comput. Phys. Commun. 48, 89–96 (1988). Scholar
  27. J.J. Monaghan, Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 543–574 (1992). Scholar
  28. J.J. Monaghan, SPH without a Tensile Instability. J. Comput. Phys. 159, 290–311 (2000). Scholar
  29. A. Nakamura, A. Fujiwara, Velocity Distribution of Fragments in Collisional Breakup. in IAU Colloq. 126: Origin and Evolution of Interplanetary Dust, vol. 173 of Astrophysics and Space Science Library, ed. by A.C. Levasseur-Regoud, H. Hasegawa (1991), p. 379Google Scholar
  30. J.D. O’Keefe, T.J. Ahrens, Cometary and meteorite swarm impact on planetary surfaces. J. Geophys. Res. 87, 6668–6680 (1982a). Scholar
  31. J.D. O’Keefe, T.J. Ahrens, The interaction of the Cretaceous/Tertiary Extinction Bolide with the atmosphere, ocean, and solid Earth (1982b).
  32. P.W. Randles, L.D. Libersky, Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 139(1), 375–408 (1996). Scholar
  33. L.D.G. Sigalotti, H. López, Adaptive Kernel estimation and SPH tensile instability. Comput. Math. Appl 55(1), 23–50 (2008). Scholar
  34. K. Sugiura, S. Inutsuka, An extension of Godunov SPH: application to negative pressure media. J. Comput. Phys. 308, 171–197 (2016). Scholar
  35. K. Sugiura, S. Inutsuka, An extension of Godunov SPH II: application to elastic dynamics. J. Comput. Phys. 333, 78–103 (2017). Scholar
  36. K. Sugiura, H. Kobayashi, S. Inutsuka, Toward understanding the origin of asteroid geometries. Variety in shapes produced by equal-mass impacts. Astron. Astrophys. 620, A167 (2018).
  37. J.W. Swegle, D.L. Hicks, S.W. Attaway, Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116, 123–134 (1995). Scholar
  38. J.H. Tillotson, Metallic equations of state for hypervelocity impact. General At. Rept. 3216, 1–142 (1962)Google Scholar
  39. B.V. Leer, Towards the ultimate conservative difference scheme. v. a second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979).
  40. J.B. Walsh, The effect of cracks on the compressibility of rocks. J. Geophys. Res. 70, 381–389 (1965). Scholar
  41. W.A. Weibull, A statistical theory of the strength of materials (transl.). Ingvetenks. Akad. Handl. (Stockholm) 151, 5–45 (1939)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Earth-Life Science InstituteTokyo Institute of TechnologyMeguroJapan

Personalised recommendations