Advertisement

Introduction

  • Keisuke SugiuraEmail author
Chapter
  • 6 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Our planetary system is formed through collisions between bodies with various sizes, that is, micrometer-sized dust particles, km-sized planetesimals, and 1,000 km-sized protoplanets. Bodies grow through collisional coalescence of bodies, and they eventually become the planets in the present solar system. Thus, the collision is one of the most important processes for the formation of the solar system. The present solar system has not only the planets but also smaller asteroids. Since asteroids do not experience significant melting thanks to those small sizes, we can obtain information about the past environment of the solar system from asteroids. Especially, shapes of asteroids tell us what kind of collisions they experienced in the past solar system because shapes of asteroids are mainly altered by collisions between asteroids and resultant shapes depend on impact conditions. In this chapter, we introduce the overview of the solar system, the properties of asteroids, the standard solar system formation scenario, and the collisional phenomena between rocky minor bodies as basic knowledge to extract information of the past solar system from asteroids’ shapes.

Keywords

Solar system Asteroids Solar system formation scenario Collisions between rocky bodies 

References

  1. C.B. Agnor, R.M. Canup, H.F. Levison, On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999).  https://doi.org/10.1006/icar.1999.6201CrossRefADSGoogle Scholar
  2. ALMA Partnership, C.L. Brogan, L.M. Pérez, T.R. Hunter, W.R.F. Dent, A.S. Hales, R.E. Hills, S. Corder, E.B. Fomalont, C. Vlahakis, Y. Asaki, D. Barkats, A. Hirota, J.A. Hodge, C.M.V. Impellizzeri, R. Kneissl, E. Liuzzo, R. Lucas, N. Marcelino, S. Matsushita, K. Nakanishi, N. Phillips, A.M.S. Richards, I. Toledo, R. Aladro, D. Broguiere, J.R. Cortes, P.C. Cortes, D. Espada, F. Galarza, D. Garcia-Appadoo, L. Guzman-Ramirez, E.M. Humphreys, T. Jung, S. Kameno, R.A. Laing, S. Leon, G. Marconi, A. Mignano, B. Nikolic, L.-A. Nyman, M. Radiszcz, A. Remijan, J.A. Rodón, T. Sawada, S. Takahashi, R.P.J. Tilanus, B. Vila Vilaro, L.C. Watson, T. Wiklind, E. Akiyama, E. Chapillon, I. de Gregorio-Monsalvo, J. Di Francesco, F. Gueth, A. Kawamura, C.-F. Lee, Q. Nguyen Luong, J. Mangum, V. Pietu, P. Sanhueza, K. Saigo, S. Takakuwa, C. Ubach, T. van Kempen, A. Wootten, A. Castro-Carrizo, H. Francke, J. Gallardo, J. Garcia, S. Gonzalez, T. Hill, T. Kaminski, Y. Kurono, H.-Y. Liu, C. Lopez, F. Morales, K. Plarre, G. Schieven, L. Testi, L. Videla, E. Villard, P. Andreani, J.E. Hibbard, K. Tatematsu, The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. 808, L3 (2015).  https://doi.org/10.1088/2041-8205/808/1/L3
  3. E. Asphaug, Similar-sized collisions and the diversity of planets. Chem. Erde. Geochem. 70, 199–219 (2010).  https://doi.org/10.1016/j.chemer.2010.01.004CrossRefADSGoogle Scholar
  4. R.-L. Ballouz, D.C. Richardson, P. Michel, S.R. Schwartz, Rotation-dependent catastrophic disruption of gravitational aggregates. Astrophys. J. 789, 158 (2014).  https://doi.org/10.1088/0004-637X/789/2/158CrossRefADSGoogle Scholar
  5. W. Benz, E. Asphaug, Simulations of brittle solids using smooth particle hydrodynamics. Comput. Phys. Comm. 87, 253–265 (1995).  https://doi.org/10.1016/0010-4655(94)00176-3CrossRefADSzbMATHGoogle Scholar
  6. W. Benz, E. Asphaug, Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).  https://doi.org/10.1006/icar.1999.6204CrossRefADSGoogle Scholar
  7. R.P. Binzel, S. Xu, S.J. Bus, E. Bowell, Origins for the near-earth asteroids. Science 257(5071), 779–782 (1992).  https://doi.org/10.1126/science.257.5071.779CrossRefADSGoogle Scholar
  8. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005).  https://doi.org/10.1016/j.icarus.2004.10.026CrossRefADSGoogle Scholar
  9. R.M. Canup, Origin of terrestrial planets and the earth-moon system. Phys. Today 57(4), 56–62 (2004).  https://doi.org/10.1063/1.1752423CrossRefGoogle Scholar
  10. B.T. Draine, H.M. Lee, Optical properties of interstellar graphite and silicate grains. Astrophys. J. 285, 89–108 (1984).  https://doi.org/10.1086/162480CrossRefADSGoogle Scholar
  11. J. Ďurech, V. Sidorin, M. Kaasalainen, DAMIT: a database of asteroid models. Astron. Astrophys. 513, A46 (2010).  https://doi.org/10.1051/0004-6361/200912693
  12. P. Farinella, D.R. Davis, F. Marzari, Asteroid families, old and young, in Completing the Inventory of the Solar System, ed. by T. Rettig, J.M. Hahn, vol. 107 of Astronomical Society of the Pacific Conference Series (1996), pp. 45–55Google Scholar
  13. P. Farinella, D. Vokrouhlický, W.K. Hartmann, Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).  https://doi.org/10.1006/icar.1997.5872CrossRefADSGoogle Scholar
  14. A. Fujiwara, P. Cerroni, D.R. Davis, E. Ryan, M. di Martino, K. Holsapple, K. Housen, Experiments and scaling laws for catastrophic collisions, in Asteroids II, ed. by R.P. Binzel, T. Gehrels, M.S. Matthews (1989), pp. 240–265Google Scholar
  15. A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006).  https://doi.org/10.1126/science.1125841CrossRefADSGoogle Scholar
  16. H. Genda, E. Kokubo, S. Ida, Merging criteria for giant impacts of protoplanets. Astrophys. J. 744, 137 (2012).  https://doi.org/10.1088/0004-637X/744/2/137CrossRefADSGoogle Scholar
  17. H. Genda, T. Fujita, H. Kobayashi, H. Tanaka, Y. Abe, Resolution dependence of disruptive collisions between planetesimals in the gravity regime. Icarus 262, 58–66 (2015).  https://doi.org/10.1016/j.icarus.2015.08.029CrossRefADSGoogle Scholar
  18. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).  https://doi.org/10.1143/PTPS.70.35CrossRefADSGoogle Scholar
  19. C. Hayashi, K. Nakazawa, Y. Nakagawa, Formation of the solar system, in Protostars and Planets II, ed. by D.C. Black, M.S. Matthews (1985), pp. 1100–1153Google Scholar
  20. K. Hirayama, Groups of asteroids probably of common origin. Astron. J. 31, 185–188 (1918).  https://doi.org/10.1086/104299CrossRefADSGoogle Scholar
  21. K.R. Housen, K.A. Holsapple, On the fragmentation of asteroids and planetary satellites. Icarus 84, 226–253 (1990).  https://doi.org/10.1016/0019-1035(90)90168-9CrossRefADSGoogle Scholar
  22. D.W. Hughes, G.H.A. Cole, The asteroidal sphericity limit. Mon. Not. R. Astron. Soc. 277, 99–105 (1995).  https://doi.org/10.1093/mnras/277.1.99CrossRefADSGoogle Scholar
  23. S. Ida, R.M. Canup, G.R. Stewart, Lunar accretion from an impact-generated disk. Nature 389, 353–357 (1997).  https://doi.org/10.1038/38669CrossRefADSGoogle Scholar
  24. S. Ida, T. Guillot, A. Morbidelli, Accretion and destruction of planetesimals in turbulent disks. Astrophys. J. 686, 1292–1301 (2008).  https://doi.org/10.1086/591903CrossRefADSGoogle Scholar
  25. A. Johansen, J. Blum, H. Tanaka, C. Ormel, M. Bizzarro, H. Rickman, The multifaceted planetesimal formation process, in Protostars and Planets VI (2014), pp. 547–570Google Scholar
  26. M. Jutzi, SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).  https://doi.org/10.1016/j.pss.2014.09.012CrossRefADSGoogle Scholar
  27. M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015).  https://doi.org/10.1126/science.aaa4747CrossRefADSGoogle Scholar
  28. M. Jutzi, W. Benz, Formation of bi-lobed shapes by sub-catastrophic collisions. A late origin of comet 67P’s structure. Astron. Astrophys. 597, A62 (2017).  https://doi.org/10.1051/0004-6361/201628964
  29. M. Kaasalainen, J. Torppa, Optimization methods for asteroid lightcurve inversion. I. Shape determination. Icarus 153, 24–36 (2001).  https://doi.org/10.1006/icar.2001.6673CrossRefADSGoogle Scholar
  30. M. Kaasalainen, J. Torppa, K. Muinonen, Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem. Icarus 153, 37–51 (2001).  https://doi.org/10.1006/icar.2001.6674CrossRefADSGoogle Scholar
  31. A. Kataoka, H. Tanaka, S. Okuzumi, K. Wada, Fluffy dust forms icy planetesimals by static compression. Astron. Astrophys. 557, L4 (2013).  https://doi.org/10.1051/0004-6361/201322151CrossRefADSGoogle Scholar
  32. M. Kato, Y.-I. Iijima, M. Arakawa, Y. Okimura, A. Fujimura, N. Maeno, H. Mizutani, Ice-on-ice impact experiments. Icarus 113(2), 423–441 (1995).  https://doi.org/10.1006/icar.1995.1032CrossRefADSGoogle Scholar
  33. Y. Kitamura, M. Momose, S. Yokogawa, R. Kawabe, M. Tamura, S. Ida, Investigation of the physical properties of protoplanetary disks around T Tauri stars by a 1 arcsecond imaging survey: evolution and diversity of the disks in their accretion stage. Astrophys. J. 581, 357–380 (2002).  https://doi.org/10.1086/344223CrossRefADSGoogle Scholar
  34. Z. Knezevic, A. Lemaître, A. Milani, The determination of asteroid proper elements (2002), pp. 603–612Google Scholar
  35. H. Kobayashi, H. Tanaka, From planetesimal to planet in turbulent disks. II. Formation of gas giant planets. Astrophys. J. 862, 127 (2018).  https://doi.org/10.3847/1538-4357/aacdf5
  36. H. Kobayashi, H. Tanaka, S. Okuzumi, From planetesimals to planets in turbulent protoplanetary disks. I. Onset of runaway growth. Astrophys. J. 817, 105 (2016).  https://doi.org/10.3847/0004-637X/817/2/105
  37. E. Kokubo, H. Genda, Formation of terrestrial planets from protoplanets under a realistic accretion condition. Astrophys. J. 714, L21–L25 (2010).  https://doi.org/10.1088/2041-8205/714/1/L21CrossRefADSGoogle Scholar
  38. E. Kokubo, S. Ida, Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114, 247–257 (1995).  https://doi.org/10.1006/icar.1995.1059CrossRefADSGoogle Scholar
  39. E. Kokubo, S. Ida, On runaway growth of planetesimals. Icarus 123, 180–191 (1996).  https://doi.org/10.1006/icar.1996.0148CrossRefADSGoogle Scholar
  40. E. Kokubo, S. Ida, Oligarchic growth of protoplanets. Icarus 131, 171–178 (1998).  https://doi.org/10.1006/icar.1997.5840CrossRefADSGoogle Scholar
  41. E. Kokubo, S. Ida, Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).  https://doi.org/10.1006/icar.1999.6237CrossRefADSGoogle Scholar
  42. R.G. Kraus, L.E. Senft, S.T. Stewart, Impacts onto H\(_{2}\)O ice: scaling laws for melting, vaporization, excavation, and final crater size. Icarus 214, 724–738 (2011).  https://doi.org/10.1016/j.icarus.2011.05.016CrossRefADSGoogle Scholar
  43. W. Kwon, L.W. Looney, L.G. Mundy, Resolving the circumstellar disk of HL Tauri at millimeter wavelengths. Astrophys. J. 741, 3 (2011).  https://doi.org/10.1088/0004-637X/741/1/3CrossRefADSGoogle Scholar
  44. Z.M. Leinhardt, S.T. Stewart, Collisions between Gravity-dominated Bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745, 79 (2012).  https://doi.org/10.1088/0004-637X/745/1/79
  45. Z.M. Leinhardt, D.C. Richardson, T. Quinn, Direct N-body simulations of rubble pile collisions. Icarus 146, 133–151 (2000).  https://doi.org/10.1006/icar.2000.6370CrossRefADSGoogle Scholar
  46. A. Leleu, M. Jutzi, M. Rubin, The peculiar shapes of Saturn’s small inner moons as evidence of mergers of similar-sized moonlets. Nature Astron. 2, 555–561 (2018).  https://doi.org/10.1038/s41550-018-0471-7CrossRefADSGoogle Scholar
  47. C.H. Lineweaver, M. Norman, The potato radius: a lower minimum size for dwarf planets. ArXiv e-prints (2010)Google Scholar
  48. J.S. Mathis, W. Rumpl, K.H. Nordsieck, The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).  https://doi.org/10.1086/155591CrossRefADSGoogle Scholar
  49. P. Michel, W. Benz, P. Tanga, D.C. Richardson, Collisions and gravitational reaccumulation: forming asteroid families and satellites. Science 294, 1696–1700 (2001).  https://doi.org/10.1126/science.1065189CrossRefADSGoogle Scholar
  50. P. Michel, M. Jutzi, D.C. Richardson, W. Benz, The asteroid Veritas: an intruder in a family named after it? Icarus 211, 535–545 (2011).  https://doi.org/10.1016/j.icarus.2010.10.012CrossRefADSGoogle Scholar
  51. P. Michel, A. Morbidelli, W.F. Bottke, Origin and dynamics of near earth objects. Comptes Rendus Physique 6(3), 291–301 (2005).  https://doi.org/10.1016/j.crhy.2004.12.013. The near earth objects: possible impactors of the earth
  52. H. Mizuno, Formation of the giant planets. Prog. Theor. Phys. 64, 544–557 (1980).  https://doi.org/10.1143/PTP.64.544CrossRefADSGoogle Scholar
  53. H. Mizuno, K. Nakazawa, C. Hayashi, Instability of a gaseous envelope surrounding a planetary core and formation of giant planets. Prog. Theor. Phys. 60, 699–710 (1978).  https://doi.org/10.1143/PTP.60.699CrossRefADSGoogle Scholar
  54. H. Mizutani, Y. Takagi, S.-I. Kawakami, New scaling laws on impact fragmentation. Icarus 87, 307–326 (1990).  https://doi.org/10.1016/0019-1035(90)90136-WCrossRefADSGoogle Scholar
  55. A. Morbidelli, D. Vokrouhlický, The Yarkovsky-driven origin of near-earth asteroids. Icarus 163, 120–134 (2003).  https://doi.org/10.1016/S0019-1035(03)00047-2CrossRefADSGoogle Scholar
  56. M. Nagasawa, S. Ida, H. Tanaka, Excitation of orbital inclinations of asteroids during depletion of a protoplanetary disk: dependence on the disk configuration. Icarus 159, 322–327 (2002).  https://doi.org/10.1006/icar.2002.6925CrossRefADSGoogle Scholar
  57. D.P. O’Brien, R. Greenberg, The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005).  https://doi.org/10.1016/j.icarus.2005.04.001CrossRefADSGoogle Scholar
  58. K. Ohtsuki, Evolution of random velocities of planetesimals in the course of accretion. Icarus 98, 20–27 (1992).  https://doi.org/10.1016/0019-1035(92)90202-ICrossRefADSGoogle Scholar
  59. S. Okuzumi, C.W. Ormel, The fate of planetesimals in turbulent disks with dead zones. I. The turbulent stirring recipe. Astrophys. J. 771, 43 (2013).  https://doi.org/10.1088/0004-637X/771/1/43
  60. S. Okuzumi, H. Tanaka, H. Kobayashi, K. Wada, Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012).  https://doi.org/10.1088/0004-637X/752/2/106CrossRefADSGoogle Scholar
  61. C.W. Ormel, S. Okuzumi, The fate of planetesimals in turbulent disks with dead zones. II. Limits on the viability of runaway accretion. Astrophys. J. 771, 44 (2013).  https://doi.org/10.1088/0004-637X/771/1/44
  62. S.J. Ostro, R. Scott, Hudson, M.C. Nolan, J.-L. Margot, D.J. Scheeres, D.B. Campbell, C. Magri, J.D. Giorgini, D.K. Yeomans, Radar observations of asteroid 216 kleopatra. Science 288(5467), 836–839 (2000).  https://doi.org/10.1126/science.288.5467.836
  63. J.-M. Petit, A. Morbidelli, J. Chambers, The primordial excitation and clearing of the asteroid belt. Icarus 153, 338–347 (2001).  https://doi.org/10.1006/icar.2001.6702CrossRefADSGoogle Scholar
  64. P. Pravec, A.W. Harris, T. Michalowski. Asteroid rotations 113–122 (2002)Google Scholar
  65. D.C. Richardson, T. Quinn, J. Stadel, G. Lake, Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143, 45–59 (2000).  https://doi.org/10.1006/icar.1999.6243CrossRefADSGoogle Scholar
  66. D.C. Richardson, P. Elankumaran, R.E. Sanderson, Numerical experiments with rubble piles: equilibrium shapes and spins. Icarus 173, 349–361 (2005).  https://doi.org/10.1016/j.icarus.2004.09.007CrossRefADSGoogle Scholar
  67. D.P. Rubincam, Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000).  https://doi.org/10.1006/icar.2000.6485CrossRefADSGoogle Scholar
  68. V.S. Safronov, Evoliutsiia doplanetnogo oblaka (1969)Google Scholar
  69. I. Satō, L. Šarounová, H. Fukushima, Size and shape of trojan asteroid Diomedes from its occultation and photometry. Icarus 145, 25–32 (2000).  https://doi.org/10.1006/icar.1999.6316CrossRefADSGoogle Scholar
  70. S.R. Schwartz, P. Michel, M. Jutzi, S. Marchi, Y. Zhang, D.C. Richardson, Catastrophic disruptions as the origin of bilobate comets. Nature Astron. 2, 379–382 (2018).  https://doi.org/10.1038/s41550-018-0395-2CrossRefADSGoogle Scholar
  71. F. Spoto, A. Milani, Z. Kneževiá, Asteroid family ages. Icarus 257, 275–289 (2015).  https://doi.org/10.1016/j.icarus.2015.04.041CrossRefADSGoogle Scholar
  72. D.J. Stevenson, Formation of the giant planets. P & SS 30, 755–764 (1982).  https://doi.org/10.1016/0032-0633(82)90108-8CrossRefADSGoogle Scholar
  73. T. Suyama, K. Wada, H. Tanaka, Numerical simulation of density evolution of dust aggregates in protoplanetary disks. I. Head-on collisions. Astrophys. J. 684, 1310–1322 (2008).  https://doi.org/10.1086/590143CrossRefADSGoogle Scholar
  74. K.J. Walsh, D.C. Richardson, Binary near-earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006).  https://doi.org/10.1016/j.icarus.2005.08.015CrossRefADSGoogle Scholar
  75. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).  https://doi.org/10.1038/nature10201CrossRefADSGoogle Scholar
  76. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).  https://doi.org/10.1093/mnras/180.1.57CrossRefADSGoogle Scholar
  77. S.J. Weidenschilling, D. Spaute, D.R. Davis, F. Marzari, K. Ohtsuki, Accretional evolution of a planetesimal swarm. Icarus 128, 429–455 (1997).  https://doi.org/10.1006/icar.1997.5747CrossRefADSGoogle Scholar
  78. G.W. Wetherill, Occurrence of giant impacts during the growth of the terrestrial planets. Science 228, 877–879 (1985).  https://doi.org/10.1126/science.228.4701.877CrossRefADSGoogle Scholar
  79. G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989).  https://doi.org/10.1016/0019-1035(89)90093-6CrossRefADSGoogle Scholar
  80. V. Zappalá, P. Bendjoya, A. Cellino, P. Farinella, C. Froeschlé, Asteroid families: search of a 12,487-asteroid sample using two different clustering techniques. Icarus 116(2), 291–314 (1995).  https://doi.org/10.1006/icar.1995.1127CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Earth-Life Science InstituteTokyo Institute of TechnologyMeguroJapan

Personalised recommendations