Advertisement

Investigation of Heat Transfer Characteristics of Al2O3-Embedded Magnesium Nitrate Hexahydrate-Based Nanocomposites for Thermal Energy Storage

  • Neeraj Gupta
  • Vivek Kumar
  • Hrishikesh Dhasmana
  • Avshish Kumar
  • Prashant Shukla
  • Amit KumarEmail author
  • Abhishek Verma
  • S. K. Dhawan
  • Vinod Kumar Jain
Conference paper
  • 6 Downloads
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Phase change materials (PCMs) have been widely investigated as latent heat energy storage medium for effective thermal management. Presently, PCM nanocomposites have been prepared by dispersing aluminum dioxide (Al2O3) nanoparticles (NPs), which act as thermally conductive nanofillers, in molten magnesium nitrate hexahydrate (Mg(NO3)2·6H2O), an inorganic salt hydrate. Al2O3 NPs with mass fractions of 0.5, 1.0 and 1.5 wt% have been dispersed in liquid PCM to obtain PCM nanocomposites, which are used to study the heat transfer properties. The morphology of the Al2O3 NPs, PCM and PCM nanocomposites has been studied by scanning electron microscopy (SEM). Fourier-transform infrared spectroscopy (FTIR) analysis was carried out to investigate the interaction between Al2O3 and PCM in PCM nanocomposite. The melting (charging) and solidification (discharging) characteristics of the PCM nanocomposites have been recorded and analyzed. The experimental results clearly showed that the rate of melting and solidification of PCM nanocomposite increases by 15% and 38%, respectively, with an increase in the mass fraction (1.5 wt%) of nanofillers as compared to the pristine PCM. The observed reduction in heat release time confirmed the effective enhancement of thermal conductivity in Al2O3-PCM nanocomposite samples as compared to the pristine PCM. The prepared PCM nanocomposites displayed superior heat transfer capability, making it a potential candidate for thermal energy storage.

Keywords

Phase change material (PCM) Nanoparticles Thermal energy storage Heat transfer 

Notes

Acknowledgements

We thank Dr. Ashok K. Chauhan, Founder President of Amity University, for his continuous support and also thank other members of the AIARS (M&D) Group, Amity University, Noida, for their support.

References

  1. 1.
    C. Rathgeber, H. Schmit, P. Hennemann, S. Hiebler, Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45 °C. Appl. Energy 136, 7–13 (2014)CrossRefGoogle Scholar
  2. 2.
    P. Felix De Castro, D.G. Shchukin, New polyurethane/docosane microcapsules as phase‐change materials for thermal energy storage. Chem. Eur. J. 21(31), 11174–11179 (2015)Google Scholar
  3. 3.
    D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew. Chem. Int. Ed. 53(15), 3780–3795 (2014)CrossRefGoogle Scholar
  4. 4.
    P.B. Salunkhe, P.S. Shembekar, A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 16(8), 5603–5616 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Kandasamy, X.-Q. Wang, A.S. Mujumdar, Application of phase change materials in thermal management of electronics. Appl. Therm. Eng. 27(17–18), 2822–2832 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Setoh, F. Tan, S. Fok, Experimental studies on the use of a phase change material for cooling mobile phones. Int. Commun. Heat Mass Transf. 37(9), 1403–1410 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Baby, C. Balaji, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int. J. Heat Mass Transf. 55(5–6), 1642–1649 (2012)CrossRefGoogle Scholar
  8. 8.
    M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45(9–10), 1597–1615 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Shukla, D. Buddhi, R. Sawhney, Solar water heaters with phase change material thermal energy storage medium: a review. Renew. Sustain. Energy Rev. 13(8), 2119–2125 (2009)CrossRefGoogle Scholar
  10. 10.
    B-a Ying, Y-l Kwok, Y. Li, Q-y Zhu, C-y Yeung, Assessing the performance of textiles incorporating phase change materials. Polym. Testing 23(5), 541–549 (2004)CrossRefGoogle Scholar
  11. 11.
    M.A. Fazilati, A.A. Alemrajabi, Phase change material for enhancing solar water heater, an experimental approach. Energy Convers. Manag. 71, 138–145 (2013)CrossRefGoogle Scholar
  12. 12.
    W.-D. Steinmann, D. Laing, R. Tamme, Latent heat storage systems for solar thermal power plants and process heat applications. J. Sol. Energy Eng. 132(2), 021003 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Castell, I. Martorell, M. Medrano, G. Pérez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 42(4), 534–540 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Kuznik, J. Virgone, J.-J. Roux, Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build. 40(2), 148–156 (2008)CrossRefGoogle Scholar
  15. 15.
    B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)CrossRefGoogle Scholar
  16. 16.
    A. Abhat, Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 30(4), 313–332 (1983)CrossRefGoogle Scholar
  17. 17.
    B. Xu, P. Li, C. Chan, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl. Energy 160, 286–307 (2015)CrossRefGoogle Scholar
  18. 18.
    L.F. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, F. Ziegler, Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range. Mater. Corr. 52(2), 140–146 (2001)CrossRefGoogle Scholar
  19. 19.
    B. Kamkari, H. Shokouhmand, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int. J. Heat Mass Transf. 78, 839–851 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Py, R. Olives, S. Mauran, Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transf. 44(14), 2727–2737 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling. Int. J. Heat Mass Transf. 46(23), 4513–4525 (2003)CrossRefGoogle Scholar
  22. 22.
    R. Siegel, Solidification of low conductivity material containing dispersed high conductivity particles. Int. J. Heat Mass Transf. 20(10), 1087–1089 (1977)CrossRefGoogle Scholar
  23. 23.
    S. Motahar, A.A. Alemrajabi, R. Khodabandeh, Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat Mass Transf. 52(8), 1621–1631 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Li, A nano-graphite/paraffin phase change material with high thermal conductivity. Appl. Energy 106, 25–30 (2013)CrossRefGoogle Scholar
  25. 25.
    S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak, M. Muhammed, Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int. Commun. Heat Mass Transfer 59, 68–74 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Yadav, B. Barman, A. Kardam, S.S. Narayanan, A. Verma, V. Jain, Thermal properties of nano-graphite-embedded magnesium chloride hexahydrate phase change composites. Energy Environ. 28(7), 651–660 (2017)CrossRefGoogle Scholar
  27. 27.
    C.H. Li, G. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 99(8), 084314 (2006)CrossRefGoogle Scholar
  28. 28.
    H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48(2), 363–371 (2009)CrossRefGoogle Scholar
  29. 29.
    A.A. Altohamy, M.A. Rabbo, R. Sakr, A.A. Attia, Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl. Therm. Eng. 84, 331–338 (2015)CrossRefGoogle Scholar
  30. 30.
    T.-P. Teng, Thermal conductivity and phase-change properties of aqueous alumina nanofluid. Energy Convers. Manag. 67, 369–375 (2013)CrossRefGoogle Scholar
  31. 31.
    X. Li, Y. Zhou, H. Nian, X. Zhang, O. Dong, X. Ren, J. Zeng, C. Hai, Y. Shen, Advanced nanocomposite phase change material based on calcium chloride hexahydrate with aluminum oxide nanoparticles for thermal energy storage. Energy Fuels 31(6), 6560–6567 (2017)CrossRefGoogle Scholar
  32. 32.
    M. Nourani, N. Hamdami, J. Keramat, A. Moheb, M. Shahedi, Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renew. Energy 88, 474–482 (2016)CrossRefGoogle Scholar
  33. 33.
    C.J. Ho, J. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transfer 36(5), 467–470 (2009)CrossRefGoogle Scholar
  34. 34.
    S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim. Acta 483(1–2), 73–77 (2009)CrossRefGoogle Scholar
  35. 35.
    C. Nguyen, G. Roy, N. Galanis, S. Suiro, Heat transfer enhancement by using Al203-water nanofluid in a liquid cooling system for microprocessors. WSEAS Trans. Heat Mass Transf. 1(3), 370 (2006)Google Scholar
  36. 36.
    S.S. Narayanan, A. Kardam, V. Kumar, N. Bhardwaj, D. Madhwal, P. Shukla, A. Kumar, A. Verma, V. Jain, Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating. Resour. Eff. Technol. 3(3), 272–279 (2017)Google Scholar
  37. 37.
    A. Kardam, S.S. Narayanan, N. Bhardwaj, D. Madhwal, P. Shukla, A. Verma, V. Jain, Ultrafast thermal charging of inorganic nano-phase change material composites for solar thermal energy storage. RSC Adv. 5(70), 56541–56548 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Wu, H. Wang, S. Xiao, D. Zhu, An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J. Therm. Anal. Calorim. 110(3), 1127–1131 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Neeraj Gupta
    • 1
  • Vivek Kumar
    • 1
  • Hrishikesh Dhasmana
    • 1
  • Avshish Kumar
    • 1
  • Prashant Shukla
    • 1
  • Amit Kumar
    • 1
    • 2
    Email author
  • Abhishek Verma
    • 1
  • S. K. Dhawan
    • 3
  • Vinod Kumar Jain
    • 1
  1. 1.Amity Institute of Advanced Research and Studies (Materials and Devices), Amity UniversityNoidaIndia
  2. 2.School of Engineering and TechnologyCentral University of HaryanaMahendergarhIndia
  3. 3.Division of Materials Physics and EngineeringNational Physical LaboratoryNew DelhiIndia

Personalised recommendations