Advertisement

Aligned Zinc Oxide Nanostructures for Dye-Sensitized Solar Cells: A Review

  • Rakhi GroverEmail author
  • Nidhi Gupta
  • Omita Nanda
  • Kanchan Saxena
Conference paper
  • 9 Downloads
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

The optoelectronic and electrical properties of zinc oxide (ZnO) nanostructures are dependent on the morphology and dimensions at the nanoscale. The present work explains different methods to grow zinc oxide nanostructures to be applied in dye-sensitized solar cells (DSSCs). The importance of aligned nanostructures of ZnO has been described with advantages specific to DSSC applications. The aligned ZnO nanostructures are generally helpful in reducing recombination instances and faster electron collection rates when used as photoanode in DSSCs. This helps to enhance short-circuit current density and open-circuit voltage which result in increased efficiency of the devices. The significance of optimization of the thickness of the photoanode has also been explained to achieve these advantages.

Keywords

Zinc oxide Aligned nanostructures Dye-sensitized solar cells 

Notes

Acknowledgements

The authors are thankful to Dr. Ashok K. Chauhan, Founder President, Amity University and Dr. V. K. Jain, Distinguished Scientist and Professor, Amity University, Noida, India, for their continuous encouragements.

References

  1. 1.
    C. Doroftei, L. Leontie, Nanostructured oxide semiconductor compounds with possible applications for gas sensors. New Uses Micro Nanomater., Chap. 8, pp. 133–150 (2018).  https://doi.org/10.5772/intechopen.79079
  2. 2.
    Y, Gyu-Chul (ed.), Semiconductor Nanostructures for Optoelectronic Devices Processing, Characterization and Applications. Nanoscience and Technology (Springer-Verlag, Berlin, Heidelberg, 2012).  https://doi.org/10.1007/978-3-642-22480-5
  3. 3.
    J. Qiu, X. Li, W. He, S.J. Park, H.K. Kim, Y.H. Hwang, J.H. Lee, Y.D. Kim, The growth mechanism and optical properties of ultra-long ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 20, 155603–155612 (2009)CrossRefGoogle Scholar
  4. 4.
    G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J. Nanomater. 2011, 1–9 (2011)CrossRefGoogle Scholar
  5. 5.
    U. Ozgur, V. Avrutin, H. Morkoc, Zinc oxide materials and devices grown by molecular beam epitaxy, in Molecular Beam Epitaxy, 2nd edn. (2018)Google Scholar
  6. 6.
    D.S.Y. Jayathilake, T.A. Nirmal Peiris, Overview on transparent conducting oxides and state of the art of low-cost doped ZnO systems. SF J. Mater. Chem. Eng. 1(1), 1004 (2018)Google Scholar
  7. 7.
    H. Hosono, K. Ueda, Transparent Conductive Oxides, in Springer Handbook of Electronic and Photonic Materials, Springer Handbooks. eds. by S. Kasap, P. Capper (Springer, Cham, 2017)Google Scholar
  8. 8.
    Y. Chen, Review of ZnO transparent conducting oxides for solar applications, in IOP Conference Series: Materials Science and Engineering, vol. 423, p. 012170 (2018)Google Scholar
  9. 9.
    R. Vittala, K.C. Ho, Zinc oxide based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 70(2017), 920–935 (2017)CrossRefGoogle Scholar
  10. 10.
    G. Jimenez-Cadena, E. Comini, M. Ferroni, A. Vomiero, G. Sberveglieri, Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Mater. Chem. Phys. 124, 694–698 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Ma, A.H. Kitai, ZnO nanowire growth by chemical vapor deposition with spatially controlled density on Zn2GeO4: Mn polycrystalline substrates. Mater. Res. Express 4, 065012 (2017)Google Scholar
  12. 12.
    G. Murillo, H. Lozano, J. Cases-Utrera, M. Lee, J. Esteve, Improving morphological quality and uniformity of hydrothermally grown ZnO nanowires by surface activation of catalyst layer. Nanoscale Res. Lett. 12(51), 1–8 (2017)Google Scholar
  13. 13.
    M.A. Boda, B.B. Çırak, Z. Demir, Ç. Çırak, Facile synthesis of hybrid ZnO nanostructures by combined electrodeposition and chemical bath deposition for improved performance of dye-sensitized solar cell. Mater. Lett. 248, 143–145 (2019)CrossRefGoogle Scholar
  14. 14.
    Q. Zhao, T. Xie, L. Peng, Y. Lin, P. Wang, L. Peng, D. Wang, Size and orientation-dependent photovoltaic properties of ZnO nanorods. J. Phys. Chem. C 111, 17136 (2007)CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)CrossRefGoogle Scholar
  16. 16.
    N. Memarian, I. Concina, A. Braga, S.M. Rozati, A. Vomiero, G. Sberveglieri, Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 12321–12325 (2011)CrossRefGoogle Scholar
  17. 17.
    I. Gonzalez-Valls, M. Lira-Cantu, Dye sensitized solar cells based on vertically-aligned ZnO nanorods: effect of UV light on power conversion efficiency and lifetime. Energy Environ. Sci. 3(6), 789–795 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Yengantiwara, R. Sharma, O. Game, A. Banpurkar, Growth of aligned ZnO nanorods array on ITO for dye sensitized solar cell. Curr. Appl. Phys. 11, 113–116 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Dwivedi, V. Dutta, Vertically aligned ZnO nanorods via self-assembled spray pyrolyzed nanoparticles for dye-sensitized solar cells, Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 015011, 1–8 (2012)Google Scholar
  20. 20.
    D. Wu, Z. Gao, F. Xu, J. Chang, W. Tao, J. He, S. Gaoa, K. Jiang, Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. Cryst. Eng. Comm. 15, 1210 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Rouhi, M.H. Mamat, C.R. Ooi, S. Mahmud, M.R. Mahmood, High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO–ZnS heterostructure nanocone photoanodes. PLoS One. 10(4), e0123433 (2015).  https://doi.org/10.1371/journal.pone.012343
  22. 22.
    J.V.S. Krishna, G. Reddy, K. Devulapally, N. Islavath, L. Giribabu, Solution processed aligned ZnO nanowires as anti-reflection and electron transport layer in organic dye-sensitized solar cells. Opt. Mater. 5, 109243, 1–5 (2019)Google Scholar
  23. 23.
    G. Syrrokostas, K. Govatsia, G. Leftheriotis, S.N. Yannopoulos, Platinum decorated zinc oxide nanowires as an efficient counter electrode for dye sensitized solar cells. J. Electroanal. Chem. 835, 86–95 (2019)CrossRefGoogle Scholar
  24. 24.
    H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa, M. Tachiya, Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3−Zn2+) aggregate formation. J. Phys. Chem. B 107(11), 2570–2574 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rakhi Grover
    • 1
    Email author
  • Nidhi Gupta
    • 1
  • Omita Nanda
    • 1
  • Kanchan Saxena
    • 1
  1. 1.Amity Institute of Advanced Research and Studies (Materials & Devices), Amity Institute of Renewable and Alternative Energy, Amity UniversityNoidaIndia

Personalised recommendations