Advertisement

Synthesis of ZnO Nanostructures Using RTCVD, Suitable for Various Applications

  • Ravi Keshwar Kumar
  • Avshish Kumar
  • Samina Husain
  • M. Husain
  • M. ZulfequarEmail author
Conference paper
  • 11 Downloads
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Zinc oxide (ZnO) nanostructures have been successfully synthesized using rapid thermal chemical vapor deposition (RTCVD) technique under ambient oxygen environment. During the growth of ZnO nanostructure, the gas pressure of oxygen was maintained at 5 Torr, and the low pressure inside the growth chamber was kept of the order of 10−6 Torr in order to increase the vapor pressure during sublimation. The morphological and application aspects of the grown ZnO nanostructures were studied at room temperature and at LN2 temperature. Different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX) and UV–Vis spectroscopy have been performed for elemental analysis, crystalline nature, shape, size and band gap calculation of as-grown ZnO nanostructure. The results exhibited that grown ZnO nanostructures have various applications including solar cells and supercapacitor for energy storage devices.

Keywords

Zinc oxide Morphological variations Structural properties RTCVD 

References

  1. 1.
    A.A. Khan, V.A. Fonoberov, M. Shamsa, A.A. Balandina, et al. J. Appl. Phys. 97, 124313 (2005)Google Scholar
  2. 2.
    V.A. Fonoberov, A.A. Balandin, et al. J. Nanoelect. Optoele. 1, 19 (2006)Google Scholar
  3. 3.
    B. Sunandan, J. Dutta et al., Sci. Technol. Adv. Mater. 10, 013001 (2009)CrossRefGoogle Scholar
  4. 4.
    Y. Boqian, F. Peterxian, A. Kumar, R.S. Katiyar, M. Achermann, et al. J. Phys. D: Appl. Phys. 42, 195402 (2009)Google Scholar
  5. 5.
    L.I. Yang, M.W. Paul, L. Yin, T.B. Scott et al., Nanotechnology 18, 215602 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Umar, C. Ribeiro, A.-Al. Hajry, Y. Masuda, Y.B. Hahn et al. J. Phys. Chem. C, 113, 14715 (2009)Google Scholar
  7. 7.
    M.C. Newton, S. Firth, T. Matsuura, P.A. Warburton, et al. J. Phy.: Conf. Ser. 26, 251 (2006)Google Scholar
  8. 8.
    S. Shishiyanua, L. Chowb, O. Lupana, T. Shishiyanua et al., ECS Trans. 3, 65 (2006)Google Scholar
  9. 9.
    V.V. Ursaki, I.O. Lupan, L. Chow, L.M. Tiginyanu, V.V. Zalamai, et al. Solid State Comm. 143, 437 (2007)Google Scholar
  10. 10.
    H. Zeng, W. Cai, B. Cao, J. Hu, Y. Li, P. Liu et al., Appl. Phy. Lett. 88, 181905 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Chaudhary, A. Umar, K.K. Bhasin, S. Bakoutas et al., Materials 11, 1–38 (2018)CrossRefGoogle Scholar
  12. 12.
    H.H. Cheng, H.M. Cheng, C.Y. Wu, H.S. Huang, Y.C. Lee, W.F. Hsieh et al., Nanotechnology 17, 1404 (2006)CrossRefGoogle Scholar
  13. 13.
    T.S. Ko, S. Yang, H.C. Hsu, C.P. Chu, H.F. Lin, S.C. Liao, T.C. Lu, H.C. Kuo, W.F. Hsieh, C.S. Wang et al., Mat. Sci. Engg. B 134, 54 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Lucas, Z.L. Wang, E. Riedo et al., Appl. Phy. Lett. 95, 051904 (2009)CrossRefGoogle Scholar
  15. 15.
    D.D. Wang, J.H. Yang, L.L. Yang, Y.J. Zhang, J.H. Lang, M. Gao et al., Cryst. Res. Tech. 43, 1041 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Fan, H.R. Scholz, F.M. Kolb, M. Zacharias, U. G¨osele, F. Heyroth, C. Eisenschmidt, T. Hempel, et al. J. Christen, Appl. Phys. A, 79, 1895 (2004)Google Scholar
  17. 17.
    D. Pradhan, M. Kumar, Y. Ando, K.T. Leung et al., Nanotechnology 19, 035603 (2008)CrossRefGoogle Scholar
  18. 18.
    H.J. Fan, B. Fuhrmann, R. Scholz, C. Himcinschi, A. Berger, H. Leipner, A. Dadgar, A. Krost, S. Christiansen, U. G¨osele, M. Zacharias et al., Nanotechnology 17, S231–S239 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Laurenti, V. Cauda et al., Nanomaterials 7, 1–34 (2017)CrossRefGoogle Scholar
  20. 20.
    S.S. Bhat, A. Qurashi, F.A. Khanday et al., TrAc Trend Anal. Chem. 86, 1–13 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Wahab, Y.S. Kim, D.S. Lee, J.M. Seo, H.S. Shin et al., Sci. Adv. Mater. 2, 35–42 (2010)CrossRefGoogle Scholar
  22. 22.
    D.P. Singh et al., Sci. Adv. Mater. 2, 245–272 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Ding, J. Liu, J. Jiang, X. Ji, X. Li, F. Wu, X. Huang, et al. Sci. Adv. Mater. 2, 396–401 (2010)Google Scholar
  24. 24.
    A. Khan, S.N. Khan, W.M. Jadwisienczak et al., Sci. Adv. Mater. 2, 572–577 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Zhu, Y. Chen, C. Jia, X. Zhang et al., J. Nanosci. Nanotechnol. 10, 8204–8209 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Ghayour, A.A. Nourbakhsh, S. Mirdamadi, R.H. Rezaei, et al. J. Nanosci. Nanotechnol. 10, 7455–7458 (2010)Google Scholar
  27. 27.
    L. Irimpan, N.P.V. Nampoori, P. Radhakrishnan et al., Sci. Adv. Mater. 2, 578–582 (2010)CrossRefGoogle Scholar
  28. 28.
    F.G. Guo, Y. Wang, Q. Liu et al., J. Nanosci. Nanotechnol. 10, 7167–7170 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Zeng, J. Cui, B. Cao, U. Gibson, Y. Bando, D. Golberg et al., Sci. Adv. Mater. 2, 336–358 (2010)CrossRefGoogle Scholar
  30. 30.
    N.T. Soitah, Y. Chunhui, S. Liang et al., Sci. Adv. Mater. 2, 534–538 (2010)CrossRefGoogle Scholar
  31. 31.
    H.Y. Ko, S.J. Yu et al., J. Nanosci. Nanotechnol. 10, 8095–8101 (2010)CrossRefGoogle Scholar
  32. 32.
    W. Wu, S. Bai, N. Cui, F. Ma, Z. Wei, Y. Qin, E. Xie et al., Sci. Adv. Mater. 2, 402–406 (2010)CrossRefGoogle Scholar
  33. 33.
    K.S. Mohanta, C.D. Kim, H.B. Kong, K.H. Cho, W. Liu, S. Tripathy, et al. Sci. Adv. Mater. 2, 64–68 (2010)Google Scholar
  34. 34.
    K.B. Sharma, N. Khare, M. Kumar, et al. J. Nanosci. Nanotechnol. 10, 8424–8431 (2010)Google Scholar
  35. 35.
    T. Han, X. Li, X. Zahang, J. Liu, J. Li et al., Adv. Cond. Matter. Physics 2017, 4859863–4859870 (2017)Google Scholar
  36. 36.
    S.J. Young, C.C. Yang, L.T. Lai et al., J. Electrochem. Soc. 164, B3013–B3028 (2017)CrossRefGoogle Scholar
  37. 37.
    K.W. Guo et al., J. Appl. Biotechnol. Bioeng. 2, 197–202 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ravi Keshwar Kumar
    • 1
  • Avshish Kumar
    • 2
  • Samina Husain
    • 3
  • M. Husain
    • 1
  • M. Zulfequar
    • 1
    Email author
  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Amity Institute for Advanced Research and Studies (Materials & Devices), Amity UniversityNoidaIndia
  3. 3.Centre for Nanoscience and NanotechnologyJamia Millia IslamiaNew DelhiIndia

Personalised recommendations