Advertisement

Tissue Engineering Applications of Bacterial Cellulose Based Nanofibers

  • Semra Unal
  • Oguzhan Gunduz
  • Muhammet UzunEmail author
Chapter
  • 29 Downloads
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 126)

Abstract

Bacterial cellulose derived extracellularly by specific bacterial genera is an environmentally friendly polymeric material. The structural properties of bacterial cellulose are greater to those of herbal cellulose, as BC possesses novel features such as high purity, high crystallinity, nanostructure networks, good light transmittance, remarkable mechanical properties, stress–strain characterization and in situ formability, porosity, uniformity, inherent biocompatibility, and improvement of cell enhancing, separation, and proliferation. In recent years, bacterial cellulose has many opportunity purposes in different applications in biomedicine such as wound-dressing materials, medical membranes, biosensors, regeneration of organs, pharmaceutical industries, food, and cosmetics. Herein, the potential applications of bacterial cellulose, alone or in combination with different components, have been focused on for the use in the regenerative and tissue engineering as an implant and scaffold.

Keywords

Bacterial cellulose Natural polymer Tissue engineering Composites Biomedical 

References

  1. Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041CrossRefGoogle Scholar
  2. Ahmed M, Hamilton G, Seifalian AM (2014) The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials 35(33):9033–9040CrossRefGoogle Scholar
  3. Ashton JH, Mertz JA, Harper JL, Slepian MJ, Mills JL, McGrath DV, Geest JV (2011) Polymeric endoaortic paving: mechanical, thermoforming, and degradation properties of polycaprolactone/polyurethane blends for cardiovascular applications. Acta Biomater 7(1):287–294CrossRefGoogle Scholar
  4. Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C (2017) Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 97:568–573CrossRefGoogle Scholar
  5. Ávila MH, Schwarz S, Feldmann EM, Mantas A, Von Bomhard A, Gatenholm P et al (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435CrossRefGoogle Scholar
  6. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149CrossRefGoogle Scholar
  7. Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544CrossRefGoogle Scholar
  8. Barozzi L, Brizard CP, Galati JC, Konstantinov IE, Bohuta L, d’Udekem Y (2011) Side-to-side aorto-GoreTex central shunt warrants central shunt patency and pulmonary arteries growth. Ann Thoracic Surg 92(4):1476–1482CrossRefGoogle Scholar
  9. Bielecki SE, Krystynowicz AE, Turkiewicz M, Kalinowska HE (2005) Bacterial cellulose. Biopolymers Online. 5. Polysaccharides from prokaryotes. Wiley Online Library.  https://doi.org/10.01002/3527600035.bpol5003
  10. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regenerative Med 1(5):406–408CrossRefGoogle Scholar
  11. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901CrossRefGoogle Scholar
  12. Bostrom MP, Asnis P (1998) Transforming growth factor beta in fracture repair. Clin Orthop Relat Res® 355:S124–S131Google Scholar
  13. Bourne RR, Dineen BP, Huq DMN, Ali SM, Johnson GJ (2004) Correction of refractive error in the adult population of Bangladesh: meeting the unmet need. Invest Ophthalmol Vis Sci 45(2):410–417CrossRefGoogle Scholar
  14. Brager MA, Patterson MJ, Connolly JF, Nevo Z (2000) Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Res 18(1):133–139CrossRefGoogle Scholar
  15. Brown AJ (1886) J Chem Soc 49, 51:172, 432, 643Google Scholar
  16. Brown EE, Laborie M-PG, Zhang J (2011) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19(1):127–137CrossRefGoogle Scholar
  17. Burugapalli K, Pandit A (2007) Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix. Biomacromol 8(11):3439–3451CrossRefGoogle Scholar
  18. Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17(1):83–91CrossRefGoogle Scholar
  19. Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 1205:2938–2944Google Scholar
  20. Cavicchioli M, Corso CT, Coelho F, Mendes L, Saska S, Soares CP et al (2015) Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: a potential material for use as therapeutic contact lens. World J Pharm Pharm Sci 4:1626–1647Google Scholar
  21. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2)Google Scholar
  22. Chen B, Lin H, Wang J, Zhao Y, Wang B, Zhao W, Dai J et al (2007a) Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 28(6):1027–1035CrossRefGoogle Scholar
  23. Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161(2–3):1355–1359CrossRefGoogle Scholar
  24. Chen ZX, Chang M, Peng YL, Zhao L, Zhan YR, Wang LJ, Wang R (2007b) Osteogenic growth peptide C-terminal pentapeptide [OGP (10–14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regul Pept 142(1–2):16–23CrossRefGoogle Scholar
  25. Chong DST, Lindsey B, Dalby MJ, Gadegaard N, Seifalian AM, Hamilton G (2014) Luminal surface engineering, ‘Micro and nanopatterning’: potential for self endothelialising vascular grafts? Eur J Vasc Endovasc Surg 47(5):566–576CrossRefGoogle Scholar
  26. Czaja W, Romanovicz D, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3–4):403–411CrossRefGoogle Scholar
  27. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151CrossRefGoogle Scholar
  28. Dahlin C, Linde A, Gottlow J, Nyman S (1988) Healing of bone defects by guided tissue regeneration. Plastic Reconstr Surg 81(5):672–676CrossRefGoogle Scholar
  29. Das SK, Kumar A, Sharma GK, Pandey AK, Bansal H, Trivedi S, Singh PB et al (2009) Lingual mucosal graft urethroplasty for anterior urethral strictures. Urology 73(1):105–108CrossRefGoogle Scholar
  30. Eming SA, Smola H, Krieg T (2002) The treatment of chronic wounds: current concepts and future aspects. Cells Tissues Organs 172:105–117CrossRefGoogle Scholar
  31. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15(5):1091–1098CrossRefGoogle Scholar
  32. Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029CrossRefGoogle Scholar
  33. Foster A (2003) Vision 2020—the right to sight. Trop Doct 33(4):193–194CrossRefGoogle Scholar
  34. Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5(5):1605–1615CrossRefGoogle Scholar
  35. Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G (2010) Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res Part A: Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 93(2):716–723Google Scholar
  36. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646CrossRefGoogle Scholar
  37. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345Google Scholar
  38. Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng, C 29(4):1216–1219CrossRefGoogle Scholar
  39. Hui J, Yuanyuan J, Jiao W, Yuan H, Yuan Z, Shiru J (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: 2nd international conference on biomedical engineering and informatics, BMEI’09, pp 1–5Google Scholar
  40. Huang JW, Lv XG, Li Z, Song LJ, Feng C, Xie MK et al (2015) Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10:055005CrossRefGoogle Scholar
  41. Huang Y, Wang J, Yang F, Shao Y, Zhang X, Dai K (2017) Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater Biol Appl 75:1034 (Materials Science & Engineering C)Google Scholar
  42. Isenberg BC, Williams C, Tranquillo RT (2006) Small-diameter artificial arteries engineered in vitro. Circ Res 98:25–35CrossRefGoogle Scholar
  43. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106CrossRefGoogle Scholar
  44. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR et al (2004) The prevalence of refractive errors among adults in the United States, Western Europe and Australia. Arch Ophthalmol 122:495–505CrossRefGoogle Scholar
  45. Khajavi R, Esfahani JE, Sattari M (2011) Crystalline structure of microbial cellulose compared with native and regenerated cellulose. Int J Polym Mater 60(14):1178–1192.  https://doi.org/10.01080/00914037.2010551372CrossRefGoogle Scholar
  46. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18(4):739–744CrossRefGoogle Scholar
  47. Kharaghani D, Meskinfam M, Rezaeikanavi M, Balagholi S, Fazili N (2015) Synthesis and characterization of hybrid nanocomposite via biomimetic method as an artificial cornea. Invest Ophthalmol Vis Sci 56(7):5024Google Scholar
  48. Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Park JK et al (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6(112):110840–110849CrossRefGoogle Scholar
  49. Khan S, Ul-Islam M, Ikram M, Islam SU, Ullah MW, Israr M, Park JK et al (2018) Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: a potential material for skin regeneration applications in vitro and in vivo. Int J Biol Macromol 117:1200–1210CrossRefGoogle Scholar
  50. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603CrossRefGoogle Scholar
  51. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edn 44:3358–3393CrossRefGoogle Scholar
  52. Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9(2):273–278CrossRefGoogle Scholar
  53. Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M et al (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534CrossRefGoogle Scholar
  54. Kudo FA, Nishibe T, Miyazaki K, Flores J, Yasuda K (2002) Albumin-coated knitted Dacron aortic prostheses: study of postoperative inflammatory reactions. Int Angiol 21(3):214Google Scholar
  55. Kuga S, Jr Malcolm Brown R (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180(2):345–350CrossRefGoogle Scholar
  56. Kumbhar JV, Jadhav SH, Bodas DS, Barhanpurkar-Naik A, Wani MR, Paknikar KM, Rajwade JM (2017) In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomed 12:6437CrossRefGoogle Scholar
  57. Lessim S, Oughlis S, Lataillade JJ, Migonney V, Changotade S, Lutomski D, Poirier F (2015) Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly (sodium styrene sulfonate)(polyNaSS): correlation with physicochemical parameters of proteins. Biomed Mater 10(6):065021CrossRefGoogle Scholar
  58. Lee SE, Park YS (2017) The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol 13(3):257–261CrossRefGoogle Scholar
  59. Leitão AF, Silva JP, Dourado F, Gama M (2013) Production and characterization of a new bacterial cellulose/poly (vinyl alcohol) nanocomposite. Materials 6(5):1956–1966CrossRefGoogle Scholar
  60. Leitão AF, Faria MA, Faustino AM, Moreira R, Mela P, Loureiro L, Gama M et al (2016) A novel small-caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing. Macromol Biosci 16(1):139–150CrossRefGoogle Scholar
  61. Levinson DJ, Glonek T (2010) Microbial cellulose contact lens. US Patent, US7832857 B2Google Scholar
  62. Li X, Wan W, Panchal CJ (2010) Transparent bacterial cellulose nanocomposite hydrogels. US Patent, 8940337 B2Google Scholar
  63. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013a) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRefGoogle Scholar
  64. Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013b) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219CrossRefGoogle Scholar
  65. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502CrossRefGoogle Scholar
  66. Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110:193–196CrossRefGoogle Scholar
  67. Luo H, Zhang J, Xiong G, Wan Y (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohydr Polym 111:722–728CrossRefGoogle Scholar
  68. Lopes JL, Machado JM, Castanheira L, Granja PL, Gama FM, Dourado F et al (2011) Friction and wear behaviour of bacterial cellulose against articular cartilage. Wear 271:2328–2333CrossRefGoogle Scholar
  69. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51CrossRefGoogle Scholar
  70. Matuda FS, Macedo lGS, Valera MC, Carvalho R, Monteiro ASF et al (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3(8):395–400Google Scholar
  71. Mello LR, Feltrin LT, Neto PTF, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150CrossRefGoogle Scholar
  72. Messaddeq Y, Ribeiro SJL, Thomazini W (2008) Trigger, Pesquisa & Desenvolvimentos Biotecnologicos Ltda. (TRIG-Non-standard), assignee. Contact lens for therapy, method and apparatus for their production and use. Brazil patent BR, PI0603704-6Google Scholar
  73. Naidoo KS, Jaggernath J (2012) Uncorrected refractive errors. Indian J Ophthalmol 60(5):432–437CrossRefGoogle Scholar
  74. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRefGoogle Scholar
  75. Novaes Jr AB, Novaes AB (1992) IMZ implants placed into extraction sockets in association with membrane therapy (Gengiflex) and porous hydroxyapatite: a case report. Int J Oral Maxillofac Implant 7(4)Google Scholar
  76. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10CrossRefGoogle Scholar
  77. Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28:526–532CrossRefGoogle Scholar
  78. Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277CrossRefGoogle Scholar
  79. Pigossi SC, de Oliveira GJPL, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr et al (2015) Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res, Part A 103:3397–3406CrossRefGoogle Scholar
  80. Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595CrossRefGoogle Scholar
  81. Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regenerative Med 5(1):107–120CrossRefGoogle Scholar
  82. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49(7):1885–1891CrossRefGoogle Scholar
  83. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58CrossRefGoogle Scholar
  84. Saha SP, Muluk S, Schenk W III, Burks SG, Grigorian A, Ploder B, Hantak E et al (2011) Use of fibrin sealant as a hemostatic agent in expanded polytetrafluoroethylene graft placement surgery. Ann Vasc Surg 25(6):813–822CrossRefGoogle Scholar
  85. Sakairi N, Suzuki S, Ueno K, Han SM, Nishi N, Tokura S (1998) Biosynthesis of hetero-polysaccharides by Acetobacter xylinum-Synthesis and characterization of metal-ion adsorptive properties of partially carboxymethylated cellulose. Carbohydr Polym 37(4):409–414CrossRefGoogle Scholar
  86. Salata LA, Craig GT, Brook IM (1998) Bone healing following the use of hydroxyapatite or ionomeric bone substitutes alone or combined with a guided bone regeneration technique: an animal study. Int J Oral Maxillofac Implant 13(1)Google Scholar
  87. Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM (2006) The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg 31(6):627–636CrossRefGoogle Scholar
  88. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J BiomaterGoogle Scholar
  89. Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Dos Santos RA, Gaspar AMM, Ribeiro SJL et al (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23(9):2253–2266CrossRefGoogle Scholar
  90. Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Wippermann J et al (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189(2):340–347Google Scholar
  91. Schluesener JK, Schluesener HJ (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87(4):569–576CrossRefGoogle Scholar
  92. Schultz GS, Mast BA (1998) Molecular analysis of the environment of healing and chronic wounds: cytokines, proteases and growth factors. Wounds 10(SupplF):1F–9FGoogle Scholar
  93. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H et al (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885CrossRefGoogle Scholar
  94. Shao W, Liu H, Liu X, Wang S, Wu J, Zhang R, Huang M et al (2015) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351–358CrossRefGoogle Scholar
  95. Sheykhnazari S, Tabarsa T, Ashori A, Shakeri A, Golalipour M (2011) Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydr Polym 86(3):1187–1191.  https://doi.org/10.01016/j.carbpol.2011.06.011CrossRefGoogle Scholar
  96. Shi S, Chen S, Zhang X, Shen W, Li X, Hu W, Wang H (2009) Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 84(2):285–290Google Scholar
  97. Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Wang Z et al (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33(28):6644–6649CrossRefGoogle Scholar
  98. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRefGoogle Scholar
  99. Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19(4):909–915CrossRefGoogle Scholar
  100. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431CrossRefGoogle Scholar
  101. Tammelin T, Saarinen T, Österberg M, Laine J (2006) Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13(5):519Google Scholar
  102. Taneja S, Kumari M, Parkash H (2010) Nonsurgical healing of large periradicular lesions using a triple antibiotic paste: a case series. Contemp Clin Dent 1(1):31–35CrossRefGoogle Scholar
  103. Tang J, Bao L, Li X, Chen L, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3(43):8537–8547CrossRefGoogle Scholar
  104. Tang J, Li X, Bao L, Chen L, Hong FF (2017) Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. J Chem Technol Biotechnol 92(6):1218–1228CrossRefGoogle Scholar
  105. Tarr HLA, Hibbery H (1931) Can J Res 4:372CrossRefGoogle Scholar
  106. Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. Amb Express 2(1):61CrossRefGoogle Scholar
  107. Theron JP, Knoetze JH, Sanderson RD, Hunter R, Mequanint K, Franz T, Bezuidenhout D et al (2010) Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater 6(7):2434–2447CrossRefGoogle Scholar
  108. Tienen TG, Verdonschot N, Heijkants RGJC, Buma P, Scholten JGF, Van Kampen A et al (2004) Prosthetic replacement of the medial meniscus in cadaveric knees does the prosthesis mimic the functional behavior of the native meniscus? Am J Sports Med 32(5):1182–1188CrossRefGoogle Scholar
  109. Tiwari A, Cheng KS, Salacinski H, Hamilton G, Seifalian AM (2003) Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur J Vasc Endovasc Surg 25(4):287–295CrossRefGoogle Scholar
  110. Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T, Horinouchi S (1996) Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotechnol Biochem 60:1377–1379CrossRefGoogle Scholar
  111. Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Rep Reg 7:442–452CrossRefGoogle Scholar
  112. Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M et al (1999) Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20(15):1407–1414CrossRefGoogle Scholar
  113. Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28(8):1736CrossRefGoogle Scholar
  114. Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861CrossRefGoogle Scholar
  115. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352CrossRefGoogle Scholar
  116. Uzun M, Anand S, Shah T (2013) Study of the pH and physical performance characteristics of silver treated absorbent wound dressings. J Ind Text 42(3):231–243CrossRefGoogle Scholar
  117. Vanella L, Kim DH, Asprinio D, Peterson SJ, Barbagallo I, Vanella A, Abraham NG et al (2010) HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone 46(1):236–243CrossRefGoogle Scholar
  118. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, Gao C et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng, C 27(4):855–864CrossRefGoogle Scholar
  119. Wang S, Gupta AS, Sagnella S, Barendt PM, Kottke-Marchant K, Marchant RE (2009) Biomimetic fluorocarbon surfactant polymers reduce platelet adhesion on PTFE/ePTFE surfaces. J Biomater Sci Polym Edn 20(5–6):619–635CrossRefGoogle Scholar
  120. Wang W, Li HY, Zhang DW, Jiang J, Cui YR, Qiu S, Zhang XX et al (2010) Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 22(21):2543–2550CrossRefGoogle Scholar
  121. Wang J, Wan Y, Han J, Lei X, Yan T, Gao C (2011) Nanocomposite prepared by immobilising gelatin and hydroxyapatite on bacterial cellulose nanofibres. Micro Nano Lett 6(3):133–136CrossRefGoogle Scholar
  122. Wang H-Y, Wei R-H, Zhao SZ (2013) Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds. Int J Ophthalmol 6(6):873–878Google Scholar
  123. WHO. Cardiovascular diseases (CVDs). http://www.who.int/cardiovascular_diseases/en/
  124. Whitcher JP, Srinivasan M, Upadhyay MP (2001) Corneal blindness: a global perspective. Bull World Health Organ 79(3):214–221Google Scholar
  125. Wiegand C, Elsner P, Hipler U-C, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type Iin vitro. Cellulose 13(6):689–696CrossRefGoogle Scholar
  126. Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y (2014) Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int J Mol Sci 15(6):10855–10867CrossRefGoogle Scholar
  127. Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87(1):839–845CrossRefGoogle Scholar
  128. Yashiro B, Shoda M, Tomizawa Y, Manaka T, Hagiwara N (2012) Long-term results of a cardiovascular implantable electronic device wrapped with an expanded polytetrafluoroethylene sheet. J Artif Organs 15(3):244–249CrossRefGoogle Scholar
  129. Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S et al (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122CrossRefGoogle Scholar
  130. Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146CrossRefGoogle Scholar
  131. Yu HC, Chen LJ, Cheng KC, Li YX, Yeh CH, Cheng JT (2012) Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother Res 26(5):709–715CrossRefGoogle Scholar
  132. Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6(7):2540–2547CrossRefGoogle Scholar
  133. Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X et al (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng, C 46:111–117CrossRefGoogle Scholar
  134. Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120(5):2938–2944CrossRefGoogle Scholar
  135. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng, C 31(1):43–49CrossRefGoogle Scholar
  136. Zhu W, Li W, He Y, Duan T (2015) In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci 338:22–26CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Bioengineering, Faculty of EngineeringMarmara UniversityIstanbulTurkey
  2. 2.Department of Metallurgical and Materials Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  3. 3.Department of Textile Engineering, Faculty of TechnologyMarmara UniversityIstanbulTurkey
  4. 4.Center for Nanotechnology and Biomaterials Applied and ResearchMarmara UniversityIstanbulTurkey

Personalised recommendations