Skip to main content

Mutation Strategy Selection Based on Fitness Landscape Analysis: A Preliminary Study

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

Abstract

Different algorithms and strategies behave disparately for different types of problems. In practical problems, we cannot grasp the nature of the problem in advance, so it is difficult for the engineers to choose a proper method to solve the problem effectively. In this case, the strategy selection task based on fitness landscape analysis comes into being. This paper gives a preliminary study on mutation strategy selection on the basis of fitness landscape analysis for continuous real-parameter optimization based on differential evolution. Some fundamental features of the fitness landscape and the components of standard differential evolution algorithm are described in detail. A mutation strategy selection framework based on fitness landscape analysis is designed. Some different types of classifiers which are applied to the proposed framework are tested and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45692-9_10

    Chapter  Google Scholar 

  2. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems, pp. 161–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23229-9_8

    Chapter  Google Scholar 

  3. Wang, M., Li, B., Zhang, G., et al.: Population evolvability: dynamic fitness landscape analysis for population-based metaheuristic algorithms. IEEE Trans. Evol. Comput. 22, 550–563 (2018)

    Article  Google Scholar 

  4. Borenstein, Y., Poli, R.: Information landscapes. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1515–1522. ACM Press, New York (2005)

    Google Scholar 

  5. Borenstein, Y., Poli, R.: Information landscapes and problem hardness. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1425–1431. ACM Press, New York (2005)

    Google Scholar 

  6. Borenstein, Y., Poli, R.: Decomposition of fitness functions in random heuristic search. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) Foundations of Genetic Algorithms, pp. 123–137. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_8

    Chapter  MATH  Google Scholar 

  7. Verel, S., Collard, P., Clergue, M.: Where are bottlenecks in NK fitness landscapes? In: The 2003 Congress on Evolutionary Computation, pp. 273–280 (2003). https://doi.org/10.1109/CEC.2003.1299585

  8. Vanneschi, L.: Theory and practice for efficient genetic programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)

    Google Scholar 

  9. Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient: a measure to characterize genetic programming fitness landscapes. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006). https://doi.org/10.1007/11729976_16

    Chapter  Google Scholar 

  10. Lu, H., Shi, J., Fei, Z., et al.: Measures in the time and frequency domain for fitness landscape analysis of dynamic optimization problems. Soft Comput. 51, 192–208 (2017)

    Article  Google Scholar 

  11. Morgan, R., Gallagher, M.: Sampling techniques and distance metrics in high dimensional continuous landscape analysis: limitations and improvements. IEEE Trans. Evol. Comput. 18(3), 456–461 (2013)

    Article  Google Scholar 

  12. Li, W., Li, S., Chen, Z., et al.: Self-feedback differential evolution adapting to fitness landscape characteristics. Soft Comput. 23(4), 1151–1163 (2019)

    Article  Google Scholar 

  13. Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plann. Infer. 43(3), 381–402 (1992)

    Article  Google Scholar 

  14. Shen, L., He, J.: A mixed strategy for evolutionary programming based on local fitness landscape. In: 2010 IEEE Congress on Evolutionary Computation, Barcelona, Spain, pp. 1–8. IEEE (2010)

    Google Scholar 

  15. Munoz, M.A., Kirley, M., Halgamuge, S.K.: Landscape characterization of numerical optimization problems using biased scattered data. In: 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, pp. 1–8. IEEE (2012)

    Google Scholar 

  16. Lu, H., Shi, J., Fei, Z., et al.: Analysis of the similarities and differences of job-based scheduling problems. Eur. J. Oper. Res. 270(3), 809–825 (2018)

    Article  MathSciNet  Google Scholar 

  17. Munoz, M.A., Kirley, M., Smith-Miles, K.: Reliability of exploratory landscape analysis (2018). https://doi.org/10.13140/RG.2.2.23838.64327

  18. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, International Computer Sciences Institute, Berkeley, California, USA (1995)

    Google Scholar 

  19. Storn, R., Price, K.: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  20. Otieno, F.A.O., Adeyemo, J.A., Abbass, H.A., et al.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Trends Appl. Sci. Res. 5(1), 531–552 (2002)

    Google Scholar 

  21. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2010)

    Article  Google Scholar 

  22. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution - an updated survey. IEEE Trans. Evol. Comput. 27, 1–30 (2016)

    Google Scholar 

  23. Suganthan, P.N., Hansen, N., Liang, J.J., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University, Singapore, KanGAL Report, IIT Kanpur, India (2005)

    Google Scholar 

  24. Liang, J.J., Qu, B.Y., Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2013 special session and competition on real-parameter optimization. Technical report, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2013)

    Google Scholar 

  25. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Technical report, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2013)

    Google Scholar 

  26. Liang, J.J., Qu, B.Y., Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical report, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore (2014)

    Google Scholar 

  27. Wu, G., Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. Technical report, National University of Defense Technology, Changsha, China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore (2017)

    Google Scholar 

  28. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675–701 (1937)

    Article  Google Scholar 

  29. Altman, N.: An introduction to Kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  30. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–23 (2001)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61922072, 61876169, 61673404, 61976237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Liang or Yaxin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, J., Li, Y., Qu, B., Yu, K., Hu, Y. (2020). Mutation Strategy Selection Based on Fitness Landscape Analysis: A Preliminary Study. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics