XTransE: Explainable Knowledge Graph Embedding for Link Prediction with Lifestyles in e-Commerce

  • Wen Zhang
  • Shumin Deng
  • Han Wang
  • Qiang Chen
  • Wei Zhang
  • Huajun ChenEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1157)


In e-Commerce, we are interested in deals by lifestyle which will improve the diversity of items shown to users. A lifestyle, an important motivation for consumption, is a person’s pattern of living in the world as expressed in activities, interests, and opinions. In this paper, we focus on the key task for deals by lifestyle, establishing linkage between items and lifestyles. We build an item-lifestyle knowledge graph to fully utilize the information about them and formulate it as a knowledge graph link prediction task. A lot of knowledge graph embedding methods are proposed to accomplish relational learning in academia. Although these methods got impressive results on benchmark datasets, they can’t provide insights and explanations for their prediction which limit their usage in industry. In this scenario, we concern about not only linking prediction results, but also explanations for predicted results and human-understandable rules, because explanations help us deal with uncertainty from algorithms and rules can be easily transferred to other platforms. Our proposal includes an explainable knowledge graph embedding method (XTransE), an explanation generator and a rule collector, which outperforms traditional classifier models and original embedding method during prediction, and successfully generates explanations and collects meaningful rules.


e-Commerce knowledge graph Lifestyle Relational learning Explanation Rules 



This work is funded by NSFC 91846204/61473260, national key research program YS2018YFB140004, and Alibaba CangJingGe (Knowledge Engine) Research Plan.


  1. 1.
    Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)Google Scholar
  2. 2.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW, pp. 413–422 (2013)Google Scholar
  4. 4.
    Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)CrossRefGoogle Scholar
  5. 5.
    Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of ACL, pp. 687–696 (2015)Google Scholar
  6. 6.
    Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 4, 580–585 (1985)CrossRefGoogle Scholar
  7. 7.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. abs/1412.6980 (2014)Google Scholar
  8. 8.
    Kotler, P.: Marketing Management (2012)Google Scholar
  9. 9.
    Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R N. 2(3), 18–22 (2002)Google Scholar
  10. 10.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187. AAAI Press (2015)Google Scholar
  11. 11.
    Liu, H., Wu, Y., Yang, Y.: Analogical inference for multi-relational embeddings. In: Proceedings ICML, pp. 2168–2178 (2017)Google Scholar
  12. 12.
    Murphy, K.P., et al.: Naive bayes classifiers. Univ. Brit. Columbia 18, 60 (2006)Google Scholar
  13. 13.
    Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge graphs. In: Proceedings of AAAI, pp. 1955–1961 (2016)Google Scholar
  14. 14.
    Omran, P.G., Wang, K., Wang, Z.: Scalable rule learning via learning representation. In: IJCAI, pp. 2149–2155. (2018)Google Scholar
  15. 15.
    Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion, pp. 926–934 (2013)Google Scholar
  17. 17.
    Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings ICML, pp. 2071–2080 (2016)Google Scholar
  18. 18.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI, pp. 1112–1119 (2014)Google Scholar
  19. 19.
    Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of ICLR (2015)Google Scholar
  20. 20.
    Zhang, W., et al.: Iteratively learning embeddings and rules for knowledge graph reasoning. In: WWW, pp. 2366–2377. ACM (2019)Google Scholar
  21. 21.
    Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embeddings for prediction and explanation in knowledge graphs. In: WSDM, pp. 96–104. ACM (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Wen Zhang
    • 1
    • 2
  • Shumin Deng
    • 1
    • 2
  • Han Wang
    • 1
    • 2
  • Qiang Chen
    • 3
  • Wei Zhang
    • 3
  • Huajun Chen
    • 1
    • 2
    Email author
  1. 1.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina
  2. 2.Alibaba-Zhejiang University Joint Institute of Frontier TechnologiesHangzhouChina
  3. 3.Alibaba GroupHangzhouChina

Personalised recommendations