EasyKG: An End-to-End Knowledge Graph Construction System

  • Yantao JiaEmail author
  • Dong Liu
  • Zhicheng Sheng
  • Letian Feng
  • Yi Liu
  • Shuo Guo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1157)


We present an end-to-end system, called EasyKG, throughout the whole lifecycle of knowledge graph (KG) construction. It has a pluggable pipeline architecture containing the components of knowledge modeling, knowledge extraction, knowledge reasoning, knowledge management and so forth. Users can automatically generate such a pipeline so as to obtain a domain-specific KG. Advanced users are allowed to create a pipeline in a drag-and-drop manner with customized components. EasyKG lowers the barriers of KG construction. Moreover, EasyKG allows users to evaluate different components and KGs, and share them across different domains so as to further reduce the cost of construction.


Knowledge graph construction End-to-end Pipeline 


  1. 1.
    Carlson, A., Betteridge, J., Kisiel, B., et al.: Toward an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)Google Scholar
  2. 2.
    Dong, X., Gabrilovich, E., Heitz, G., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 601–610. ACM (2014)Google Scholar
  3. 3.
    Elsken, T., Metzen, J.H., Hutter, F., et al.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(55), 1–21 (2018)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Gliozzo, A., Ackerson, C., Bhattacharya, R., et al.: Building Cognitive Applications with IBM Watson Services: Volume 1 Getting Started. IBM Redbooks, New York (2017)Google Scholar
  5. 5.
    Jia, Y., Wang, Y., Lin, H., et al.: Locally adaptive translation for knowledge graph embedding. In: Thirtieth AAAI Conference on Artificial Intelligence, pp. 992–998. AAAI (2016)Google Scholar
  6. 6.
    Jia, Y., Wang, Y., Cheng, X., et al.: OpenKN: an open knowledge computational engine for network big data. In: Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Network Analysis and Mining, pp. 657–664. IEEE Press (2014)Google Scholar
  7. 7.
    Melchior, A., Peralta, E., Valiente, M., et al.: KNIME: the Konstanz information miner. ACM SIGKDD Explor. Newslett. 11(1), 26–31 (2006)Google Scholar
  8. 8.
    Nickel, M., Murphy, K., Tresp, V., et al.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)CrossRefGoogle Scholar
  9. 9.
    Ratner, A., Bach, S.H., Ehrenberg, H., et al.: Snorkel: rapid training data creation with weak supervision. Proc. VLDB Endow. 11(3), 269–282 (2017)CrossRefGoogle Scholar
  10. 10.
    Rotmensch, M., Halpern, Y., Tlimat, L., et al.: Learning a health knowledge graph from electronic medical records. Sci. Rep. 7(1), 5994 (2017)CrossRefGoogle Scholar
  11. 11.
    Singhal, A.: Introducing the knowledge graph: things, not strings. Official Google Blog, May 2012Google Scholar
  12. 12.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)Google Scholar
  13. 13.
    Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: Proceedings of 5th International Conference on Learning Representations (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yantao Jia
    • 1
    Email author
  • Dong Liu
    • 1
  • Zhicheng Sheng
    • 1
  • Letian Feng
    • 1
  • Yi Liu
    • 1
  • Shuo Guo
    • 1
  1. 1.Huawei Technologies Co., Ltd.BeijingChina

Personalised recommendations