Building Knowledge Graph Across Different Subdomains Using Interlinking Ontology for Biomedical Concepts

  • Kouji KozakiEmail author
  • Tatsuya Kushida
  • Yasunori Yamamoto
  • Toshihisa Takagi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1157)


This paper proposes a method for building knowledge graphs across different subdomains in life science using Interlinking Ontology for Biological Concepts (IOBC). IOBC provides wide range of concepts related to biomedical domains with relationships between concepts across different subdomains. The proposed method obtains some relationships according to interests of the users. Then, it combines these relationships with mappings from related concepts to other RDF datasets and construct new knowledge graphs using them. This paper introduces the building method which consist of 5 steps with some results of trial constructions of knowledge graphs.


Knowledge graph Ontology Interlinking concepts Data integration 



This study was supported by an operating grant from the Japan Science and Technology Agency and JSPS KAKENHI Grant Number JP17H01789.


  1. 1.
    Bodenreider, O., Nelson, S.J., et al.: Beyond synonymy: exploiting the UMLS semantics in mapping vocabularies. In: Proceedings of AMIA Symposium, pp. 815–819 (1998)Google Scholar
  2. 2.
    The UniProt Consortium: UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45(D1), D158–D169 (2017)CrossRefGoogle Scholar
  3. 3.
    Gene Ontology Consortium: Creating the gene ontology resource: design and implementation. Genome Res. 11(8), 1425–1433 (2001)CrossRefGoogle Scholar
  4. 4.
    Kushida, T., et al.: Refined JST thesaurus extended with data from other open life science data sources. In: Wang, Z., Turhan, A.Y., Wang, K., Zhang, X. (eds.) JIST 2017. LNCS, vol. 10675, pp. 35–48. Springer, Cham (2017). Scholar
  5. 5.
    Kushida, T., Kozaki, K., Tateisi, Y., et al.: Efficient construction of a new ontology for life sciences by sub-classifying related terms in the Japan science and technology agency thesaurus. In: Proceedings of ICBO 2017, vol. 2137, pp. 1–6., Newcastle (2017)Google Scholar
  6. 6.
    Kushida, T., Kozaki, K., Kawamura, T., Tateisi, Y., Yamamoto, Y., Takagi, T.: Inference of functions, roles, and applications of chemicals using linked open data and ontologies. In: Ichise, R., Lecue, F., Kawamura, T., Muggleton, S., Kozaki, K. (eds.) JIST 2018. LNCS, vol. 11341, pp. 385–397. Springer, Cham (2018). Scholar
  7. 7.
    Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res. 37(suppl 2), W170–W173 (2009)CrossRefGoogle Scholar
  8. 8.
    Ghazvinian, A., Noy, N.F., Musen, M.A.: Creating mappings for ontologies in biomedicine: simple methods work. In: AMIA Annual Symposium Proceedings, pp. 198–202. American Medical Informatics Association (2009)Google Scholar
  9. 9.
    Kushida, T., et al.: Refining JST thesaurus and discussing the effectiveness in life science research. In: Proceedings of 5th Intelligent Exploration of Semantic Data Workshop (IESD 2016, co-located with ISWC 2016), Kobe, pp. 1–14 (2016)Google Scholar
  10. 10.
    Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., et al.: The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 41(D1), D456–D463 (2013)CrossRefGoogle Scholar
  11. 11.
    Kushida, T., Kozaki, K., Kawamura, T., Tateisi, Y., Yamamoto, Y., Takagi, T.: Interconnection of biological knowledge using NikkajiRDF and interlinking ontology for biological concepts: new generation computing. New Gener. Comput. 37, 525–549 (2019)CrossRefGoogle Scholar
  12. 12.
    Jupp, S., et al.: A new ontology lookup service at EMBL-EBI. In: Malone, J. et al. (eds.) Proceedings of SWAT4LS International Conference 2015 (2015)Google Scholar
  13. 13.
    Kamdar, M.R., Musen, M.A.: PhLeGrA: graph analytics in pharmacology over the web of life sciences linked open data. In: Proceedings of the 26th International Conference on World Wide Web, pp. 321–329 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Osaka Electro-Communication UniversityOsakaJapan
  2. 2.RIKEN BioResource Research CenterIbarakiJapan
  3. 3.National Bioscience Database CenterJapan Science and Technology AgencyTokyoJapan
  4. 4.Database Center for Life ScienceResearch Organization of Information and SystemsChibaJapan
  5. 5.Toyama University of International StudiesToyamaJapan

Personalised recommendations