Advertisement

Vertical Integration via Dynamic Aggregation of Information in OPC UA

  • Sebastian SchmiedEmail author
  • Daniel Großmann
  • Selvine G. Mathias
  • Suprateek Banerjee
Conference paper
  • 232 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1178)

Abstract

Vertical and horizontal integration of manufacturing systems is an important part of the Industry 4.0 concept.

The provision of actual implementation strategies for manufacturing systems not following the hierarchy levels of the automation pyramid is still a challenge that needs to be solved. In a traditional production environment data exchange happens through strictly defined interfaces that are not easily changeable or extendable. Within the shop-floor, OPC UA is a communication technology already used for the widespread exchange of information. OPC UA offers a technology that allows data exchange using unified interfaces. Information can be organized and provided in a more effective way. This provision requires an information model as semantic description of the data, and a strategy to integrate data from different sources.

This paper presents an approach for information model creation and demonstrates an implementation approach in order to create a single OPC UA address space from multiple physical and digital devices. This is done via creation of OPC UA servers for all production entities and dynamically linking them via intelligent aggregation.

Keywords

OPC UA Interoperability Aggregation 

Notes

Acknowledgement and Outlook

The presented paper was elaborated within the research project InMoFlex. This project is founded by the Federal Ministry of Education and Research of Germany. The present approach was developed within the competence field “Production and Automation Engineering” of the Technical University Ingolstadt.

In a manufacturing environment the permanent availability of information is very important. Therefore, it is relevant to integrate functions that ensure high availability, as for example redundancy, to the aggregating server. Additionally, functions for security like a central certificate store have to be implemented.

References

  1. 1.
    Banerjee, S., Großmann, D.: Aggregation of information models—an OPC UA based approach to a holistic model of models. In: 2017 4th International Conference on Industrial Engineering and Applications - ICIEA 2017, pp. 296–299. IEEE, Piscataway (2017).  https://doi.org/10.1109/IEA.2017.7939225
  2. 2.
    Derhamy, H., Ronnholm, J., Delsing, J., Eliasson, J., van Deventer, J.: Protocol interoperability of OPC UA in service oriented architectures. In: 2017 IEEE 15th International Conference on Industrial Informatics (INDIN), pp. 44–50. IEEE, Piscataway (2017).  https://doi.org/10.1109/INDIN.2017.8104744
  3. 3.
    Diedrich, C., Lüder, A., Hundt, L.: Bedeutung der interoperabilität bei entwurf und nutzung von automatisierten produktionssystemen. at - Automatisierungstechnik 59(7), 426–438 (2011).  https://doi.org/10.1524/auto.2011.0937CrossRefGoogle Scholar
  4. 4.
    Enste, U., Mahnke, W.: OPC unified architecture. Automatisierungstechnik 59(7), 397–404 (2011).  https://doi.org/10.1524/auto.2011.0934CrossRefGoogle Scholar
  5. 5.
    Faller, C., Höftmann, M.: Service-oriented communication model for cyber-physical-production-systems. Procedia CIRP 67, 156–161 (2018).  https://doi.org/10.1016/j.procir.2017.12.192CrossRefGoogle Scholar
  6. 6.
    Großmann, D., Bregulla, M., Banerjee, S., Schulz, D., Braun, R.: OPC UA server aggregation—the foundation for an internet of portals. In: IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–6. IEEE, Piscataway (2014).  https://doi.org/10.1109/ETFA.2014.7005354
  7. 7.
    Hoffmann, M., Meisen, T., Schilberg, D., Jeschke, S.: Multi-dimensional production planning using a vertical data integration approach: a contribution to modular factory design. In: 10th International Conference and Expo on Emerging Technologies for a Smarter World (CEWIT), pp. 1–6. IEEE, Piscataway (2013).  https://doi.org/10.1109/CEWIT.2013.6713754
  8. 8.
    International Electrotechnical Commission: IEC 62264–1, enterprise-control system integration - Part 1: models and terminology (2013)Google Scholar
  9. 9.
    International Electrotechnical Commission: IEC 62541–3 OPC unified architecture - Part 3: Address Space Model. International standard Norme internationale, vol. IEC 62541–3. International Electrotechnical Commission, Geneva, 2.0 edn. (2015)Google Scholar
  10. 10.
    International Electrotechnical Commission: IEC 62541–5 OPC unified architecture - Part 5: Information Model. International Standard International Electrotechnical Commission, Geneva, 2.0 edn. (2015)Google Scholar
  11. 11.
    International Electrotechnical Commission: IEC TR 62541–1 OPC UA Part 1: Overview and Concepts. International standard, International Electrotechnical Commission, Geneva, 2.0 edn. (2016)Google Scholar
  12. 12.
    Irani, Z., Hlupic, V., Baldwin, L.P., Love, P.E.: Re-engineering manufacturing processes through simulation modelling. Logist. Inf. Manag. 13(1), 7–13 (2000).  https://doi.org/10.1108/09576050010306341CrossRefGoogle Scholar
  13. 13.
    Mahnke, W., Leitner, S.H., Damm, M.: OPC Unified Architecture, 1st edn. Springer, Berlin (2009).  https://doi.org/10.1007/978-3-540-68899-0CrossRefGoogle Scholar
  14. 14.
    Schlick, J., Stephan, P., Loskyll, M., Lappe, D.: Industrie 4.0 in der praktischen anwendung. In: Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M. (eds.) Handbuch Industrie 4.0, vol. 3, pp. 1–27. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-45537-1_46-1CrossRefGoogle Scholar
  15. 15.
    Schmied, S., Grosmann, D., Denk, B.: A systematic top-down information modelling approach for workshop-type manufacturing systems. In: IEEE Conference on Emerging Technologies & Factory Automation (ed.) Proceedings, 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1305–1308. IEEE, Piscataway (2019).  https://doi.org/10.1109/ETFA.2019.8869377
  16. 16.
    Seilonen, I., Tuovinen, T., Elovaara, J., Tuomi, I., Oksanen, T.: Aggregating OPC UA servers for monitoring manufacturing systems and mobile work machines. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4. IEEE, Piscataway (2016).  https://doi.org/10.1109/ETFA.2016.7733739
  17. 17.
    Wang, H., Ma, Y., Yu, F.: An OPC UA multi-server aggregator with cache management. In: CAC (ed.) Proceedings, 2018 Chinese Automation Congress (CAC). pp. 68–73. IEEE, Piscataway (2018).  https://doi.org/10.1109/CAC.2018.8623689

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Zentrum für Angewandte Forschung, Technische Hochschule IngolstadtIngolstadtGermany
  2. 2.VDMA Robotik + Automation, Verband Deutscher Maschinen- und AnlagenbauFrankfurt am MainGermany

Personalised recommendations