Advertisement

DEM Analysis of Vibration Reduction and Buffering Capacity of Granular Materials

  • Shunying JiEmail author
  • Lu Liu
Chapter
  • 34 Downloads
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Granular materials is a complex system, and the energy of the system is mainly dissipated through inelastic collisions and sliding friction between particles (Royer et al. 2007; Ramírez et al. 1999). Under the external load, strong compression and collision between particles have been observed.

References

  1. Arslantas YE, Oehlschlagelt, Sagliano M (2016) Safe landing area determination for a moon lander by reachability analysis. Acta Astronautica 128:607–615CrossRefGoogle Scholar
  2. Arslantas YE, Theil S (2017) Attainable landing area computation of a lunar lander with uncertainty by reachability Analysis. Optim Methods Softw, 497–513Google Scholar
  3. Bahrani N, Kaiser PK, Valley B (2014) Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass. Int J Rock Mech Min Sci 71:117–130CrossRefGoogle Scholar
  4. Bai XM, Shah B, Keer LM et al (2009) Particle dynamics simulations of a piston-based particle damping. Powder Technol 189(1):115–125CrossRefGoogle Scholar
  5. Bajkowski JM, Dyniewicz B, Bajer CI (2016) Semi-active damping strategy for beams system with pneumatically controlled granular structure. Mech Syst Signal Process 70:387–396CrossRefGoogle Scholar
  6. Berger KJ, Anand A, Metzger PT et al (2013) Role of collisions in erosion of regolith during a lunar landing. Phys Rev E 87(2):652–670CrossRefGoogle Scholar
  7. Brzinski TA, Mayor P, Durian DJ (2013) Depth-dependent resistance of granular media to vertical penetration. Phys Rev Lett 111(16):168002CrossRefGoogle Scholar
  8. Chen J, Georgakis CT (2013) Tuned rolling-ball dampers for vibration control in wind turbines. J Sound Vib 332(21):5271–5282CrossRefGoogle Scholar
  9. Du Y, Wang S, Zhang J (2010) Energy dissipation in collision of two balls covered by fine particles. Int J Impact Eng 37(3):309–316CrossRefGoogle Scholar
  10. Duan SZ, Cheng N, Xie L (2013) A new statistical model for threshold friction velocity of sand particle motion. CATENA 104(2):32–38CrossRefGoogle Scholar
  11. Forest LM, Cohanim BE, Brady T (2008) Human interactive landing point redesignation for lunar landing. Conference 2012 IEEE, Big Sky, MT, USAGoogle Scholar
  12. Fraternali F, Porter MA, Daraio C (2009) Optimal design of composite granular protectors. Mech Adv Mater Struct 17(1):1–19CrossRefGoogle Scholar
  13. Geng J, Howell D, Longhi E et al (2001) Footprints in sand: the response of a granular material to local perturbations. Phys Rev Lett 87(3):035506CrossRefGoogle Scholar
  14. Goldenberg C, Goldhirsch I (2004) Small and large scale granular statics. Granular Matter 6(2–3):87–96zbMATHCrossRefGoogle Scholar
  15. Hou X, Xue P, Wang Y, Cao P, Tang T (2018) Theoretical and discrete element simulation studies of aircraft landing impact. J Brazilian Soc Mech Sci Eng 40:115CrossRefGoogle Scholar
  16. Ikago K, Saito K, Inoue N (2012) Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthquake Eng Struct Dyn 41(3):453–474CrossRefGoogle Scholar
  17. Jeong J, Shin CS (2017) The effect of foot landing type on lower-extremity kinematics, kinetics, and energy absorption during single-leg landing. Korean J Sport Biomech 27:189–195CrossRefGoogle Scholar
  18. Jiang M, Shen Z, Thornton C (2013) Microscopic contact model of lunar regolith for high efficiency discrete element analyses. Comput Geotech 54(10):104–116CrossRefGoogle Scholar
  19. Kariya K, Ishida T, Sawai S et al (2018) Position estimation using crater-based linear features for pinpoint lunar landing. Aerosp Technol Jpn 17:79–87Google Scholar
  20. Kim E, Martinez AJ, Phenisee SE et al (2018) Direct measurement of super diffusive energy transport in disordered granular chains. Nature Commun 9(1):640CrossRefGoogle Scholar
  21. Knuth MA, Johnson JB, Hopkins MA et al (2012) Discrete element modeling of a Mars Exploration Rover wheel in granular material. J Terra Mech 49(1):27–36CrossRefGoogle Scholar
  22. Kondic L, Fang X, Losert W et al (2012) Microstructure evolution during impact on granular matter. Phys Rev E 85(1 Pt 1):011305CrossRefGoogle Scholar
  23. Kulchitsky AV, Johnson JB, Reeves DM (2016) Resistance forces during boulder extraction from an asteroid. Acta Astronaut 127:424–437CrossRefGoogle Scholar
  24. Li F, Ye M, Yan J et al (2016) A Simulation of the four-way lunar lander-orbiter tracking mode for the Chang’E-5 Mission. Adv Space Res 57(11):2376–2384CrossRefGoogle Scholar
  25. Li K, Darby AP (2008) A buffered impact damper for multi-degree-of-freedom structural control. Earthquake Eng Struct Dyn 37(13):1491–1510CrossRefGoogle Scholar
  26. Lu Z, Lu X, Lu W et al (2012) Experimental studies of the effects of buffered particle damper attached to a multi-degree-of-freedom system under dynamic loads. J Sound Vib 331(9):2007–2022CrossRefGoogle Scholar
  27. Mao K, Wang MY, Xu Z et al (2004) DEM simulation of particle damping. Powder Technol 142(2–3):154–165CrossRefGoogle Scholar
  28. Metzger PT, Anderson S, Colaprete A (2018) Experiments indicate regolith is looser in the lunar polar regions than at the lunar landing sites. Earth Space Conf 4:126–137Google Scholar
  29. Nayeri RD, Masri SF, Caffrey JP (2007) Studies of the performance of multi-unit impact dampers under stochastic excitation. J Vib Acoust 129:239–251CrossRefGoogle Scholar
  30. Omidvar M, Iskander M, Bless S (2014) Response of granular media to rapid penetration. Int J Impact Eng 66:60–82CrossRefGoogle Scholar
  31. Ramírez R, Pöschel T, Brilliantov NV et al (1999) Coefficient of restitution of colliding viscoelastic spheres. Phys Rev 60(4 Pt B):4465CrossRefGoogle Scholar
  32. Royer JR, Corwin EI, Eng PJ et al (2007) Gas-mediated impact dynamics in fine-grained granular materials. Phys Rev Lett 99(3):038003CrossRefGoogle Scholar
  33. Saeki M (2005) Analytical study of multi-particle damping. J Sound Vib 281(3–5):1133–1144CrossRefGoogle Scholar
  34. Sakamura Y, Komaki H (2012) Numerical simulations of shock-induced load transfer processes in granular media using the discrete element method. Shock Waves 22(1):57–68CrossRefGoogle Scholar
  35. Seguin A, Bertho Y, Gondret P et al (2011) Dense granular flow around a penetrating object: experiment and hydrodynamic model. Phys Rev Lett 107(4):048001CrossRefGoogle Scholar
  36. Shah BM, Nudell JJ, Kao KR et al (2011) Semi-active particle-based damping systems controlled by magnetic fields. J Sound Vib 330(2):182–193CrossRefGoogle Scholar
  37. Smith W, Peng H (2013) Modeling of wheel-soil interaction over rough terrain using the discrete element method. J Terra Mech 50(5–6):277–287CrossRefGoogle Scholar
  38. Stefan L (2005) Granular media: information propagation. Nature 435(7039):159–160CrossRefGoogle Scholar
  39. Stefan L (1997) Stress distribution in static two dimensional granular model media in the absence of friction. Phys Rev E 55(4):4720–4729CrossRefGoogle Scholar
  40. Su Y, Cui Y, Ng CWW et al (2019) Effects of particle size and cushioning thickness on the performance of rock-filled gabions used in protection against boulder impact. Canadian Geotechn J 56(2):198–207CrossRefGoogle Scholar
  41. Sutoh M, Wakabayashi S, Hoshino T (2017) Landing behavior analysis of lunar probe based on drop tests and RFT in a vacuum. IEEE Robot Autom Lett 99:1Google Scholar
  42. Udupa G, Sundaram G, Poduval P et al (2018) Certain investigations on soft lander for lunar exploration. Procedia Comput Sci 133:393–400CrossRefGoogle Scholar
  43. Umbanhowar P, Goldman DI (2010) Granular impact and the critical packing state. Phys Rev E 82(1):010301CrossRefGoogle Scholar
  44. Wang C, Nie H, Chen J et al (2019) The design and dynamic analysis of a lunar lander with semi-active control. Acta Astronaut 157:145–156CrossRefGoogle Scholar
  45. Wang SC, Deng ZQ, Gao HB et al (2004) Design of impact isolating landing legs for micro-miniature lunar lander. J Harbin Inst Technol 36(2):180–182Google Scholar
  46. Zalewski R, Szmidt T (2014) Application of Special Granular Structures for semi-active damping of lateral beam vibrations. Eng Struct 65:13–20CrossRefGoogle Scholar
  47. Zheng G, Nie H, Chen J et al (2018) Dynamic analysis of lunar lander during soft landing using explicit finite element method. Acta Astronaut 148:69–81CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering MechanicsDalian University of TechnologyDalianChina
  2. 2.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations