Advertisement

Functions of Immune Checkpoint Molecules Beyond Immune Evasion

  • Yaping Zhang
  • Junke ZhengEmail author
Chapter
  • 243 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1248)

Abstract

Immune checkpoint molecules, including inhibitory and stimulatory immune checkpoint molecules, are defined as ligand–receptor pairs that exert inhibitory or stimulatory effects on immune responses. Most of the immune checkpoint molecules that have been described so far are expressed on cells of the adaptive immune system, particularly on T cells, and of the innate immune system. They are crucial for maintaining the self-tolerance and modulating the length and magnitude of immune responses of effectors in different tissues to minimize the tissue damage. More and more evidences have shown that inhibitory or stimulatory immune checkpoint molecules are expressed on a sizeable fraction of tumor types. Although the main function of tumor cell-associated immune checkpoint molecules is considered to mediate the immune evasion, it has been reported that the immune checkpoint molecules expressed on tumor cells also play important roles in the maintenance of many malignant behaviors, including self-renewal, epithelial–mesenchymal transition, metastasis, drug resistance, anti-apoptosis, angiogenesis, or enhanced energy metabolisms. In this section, we mainly focus on delineating the roles of the tumor cell-associated immune checkpoint molecules beyond immune evasion, such as PD-L1, PD-1, B7-H3, B7-H4, LILRB1, LILRB2, TIM3, CD47, CD137, and CD70.

Keywords

Immune checkpoint Self-tolerance Inflammation Autoimmune disease Epithelial–mesenchymal transition 

References

  1. Alsuliman A et al (2015) Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: significance in claudin-low breast cancer cells. Mol Cancer 14:149CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson AC et al (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318(5853):1141–1143Google Scholar
  3. Baccelli I et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bachawal SV et al (2015) Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging. Cancer Res 75(12):2501–2509CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baudhuin J et al (2013) Exocytosis acts as a modulator of the ILT4-mediated inhibition of neutrophil functions. Proc Natl Acad Sci U S A 110(44):17957–17962CrossRefPubMedPubMedCentralGoogle Scholar
  6. Black M et al (2016) Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 7(9):10557–10567CrossRefPubMedPubMedCentralGoogle Scholar
  7. Borges L et al (1997) A family of human lymphoid and myeloid Ig-like receptors, some of which bind to MHC class I molecules. J Immunol 159(11):5192–5196PubMedPubMedCentralGoogle Scholar
  8. Bras M et al (2007) Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Mol Cell Biol 27(20):7073–7088CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brown E et al (1990) Integrin-associated protein: a 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol 111(6 Pt 1):2785–2794CrossRefPubMedPubMedCentralGoogle Scholar
  10. Butte MJ et al (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27(1):111–122CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cao Y et al (2011) B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res 71(4):1235–1243CrossRefPubMedGoogle Scholar
  12. Cao D et al (2019) Retinoic acid-related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Res 79(10):2604–2618CrossRefPubMedGoogle Scholar
  13. Carbone C et al (2015) An angiopoietin-like protein 2 autocrine signaling promotes EMT during pancreatic ductal carcinogenesis. Oncotarget 6(15):13822–13834CrossRefPubMedGoogle Scholar
  14. Chan KS et al (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106(33):14016–14021CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chang CH et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6):1229–1241CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chao MP et al (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chao MP et al (2011) Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 71(4):1374–1384CrossRefPubMedGoogle Scholar
  18. Chapoval AI et al (2001) B7-H3: A costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2(3):269–74Google Scholar
  19. Chen L, Han X (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest 125(9):3384–3391CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chen YW, Tekle C, Fodstad O (2008) The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr Cancer Drug Targets 8(5):404–413CrossRefPubMedGoogle Scholar
  21. Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy–inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res 18(24):6580–6587CrossRefPubMedGoogle Scholar
  22. Chen X et al (2016) B7-H4 facilitates proliferation of esophageal squamous cell carcinoma cells through promoting interleukin-6/signal transducer and activator of transcription 3 pathway activation. Cancer Sci 107(7):944–954CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cheng L et al (2009) B7-H4 expression promotes tumorigenesis in ovarian cancer. Int J Gynecol Cancer 19(9):1481–1486CrossRefPubMedGoogle Scholar
  24. Chu DT et al (2019) An update on Anti-CD137 antibodies in immunotherapies for cancer. Int J Mol Sci 20(8)Google Scholar
  25. Cioffi M et al (2015) Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin Cancer Res 21(10):2325–2337CrossRefPubMedGoogle Scholar
  26. Colonna M, Nakajima H, Cella M (2000) A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells. Semin Immunol 12(2):121–127CrossRefPubMedGoogle Scholar
  27. Colovai AI et al (2007) Expression of inhibitory receptor ILT3 on neoplastic B cells is associated with lymphoid tissue involvement in chronic lymphocytic leukemia. Cytometry B Clin Cytom 72(5):354–362CrossRefPubMedGoogle Scholar
  28. Cortesini R (2007) Pancreas cancer and the role of soluble immunoglobulin-like transcript 3 (ILT3). JOP 8(6):697–703PubMedGoogle Scholar
  29. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9(4):271–285CrossRefPubMedPubMedCentralGoogle Scholar
  30. de Goeje PL et al (2015) Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer. Oncoimmunology 4(7):e1014242CrossRefPubMedPubMedCentralGoogle Scholar
  31. Deng M et al (2018) LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature 562(7728):605–609CrossRefPubMedPubMedCentralGoogle Scholar
  32. Denoeud J, Moser M (2011) Role of CD27/CD70 pathway of activation in immunity and tolerance. J Leukoc Biol 89(2):195–203CrossRefGoogle Scholar
  33. Dharmadhikari B et al (2016) CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology 5(4):e1113367CrossRefGoogle Scholar
  34. Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800CrossRefGoogle Scholar
  35. Du W et al (2017) TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci 18(3)Google Scholar
  36. Fan H, Zhu JH, Yao XQ (2016) Prognostic significance of B7-H3 expression in patients with colorectal cancer: A meta-analysis. Pak J Med Sci 32(6):1568–1573CrossRefPubMedPubMedCentralGoogle Scholar
  37. Feng ZM, Guo SM (2016) Tim-3 facilitates osteosarcoma proliferation and metastasis through the NF-kappaB pathway and epithelial-mesenchymal transition. Genet Mol Res 15(3)Google Scholar
  38. Feng J et al (2017) Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36(42):5829–5839CrossRefGoogle Scholar
  39. Flies DB et al (2014) Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest 124(5):1966–1975CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gao A, Sun Y, Peng G (2018) ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim Biophys Acta Rev Cancer 1869(2):278–285CrossRefGoogle Scholar
  41. Ge H et al (2017) Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM. Int J Cancer 141(7):1434–1444CrossRefGoogle Scholar
  42. Ghebeh H et al (2007) Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 121(4):751–758CrossRefGoogle Scholar
  43. Goto H et al (2014) Efficacy of anti-CD47 antibody-mediated phagocytosis with macrophages against primary effusion lymphoma. Eur J Cancer 50(10):1836–1846CrossRefGoogle Scholar
  44. Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19CrossRefGoogle Scholar
  45. Harly C et al (2011) Up-regulation of cytolytic functions of human Vdelta2-gamma T lymphocytes through engagement of ILT2 expressed by tumor target cells. Blood 117(10):2864–2873CrossRefGoogle Scholar
  46. Hastings WD et al (2009) TIM-3 is expressed on activated human CD4 + T cells and regulates Th1 and Th17 cytokines. Eur J Immunol 39(9):2492–2501CrossRefPubMedPubMedCentralGoogle Scholar
  47. Heidenreich S et al (2012) Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol 2012:652130CrossRefPubMedPubMedCentralGoogle Scholar
  48. Isenberg JS et al (2006) CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 281(36):26069–26080CrossRefGoogle Scholar
  49. Ishibashi M et al (2016) Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer Immunol Res 4(9):779–788CrossRefGoogle Scholar
  50. Jacobs J et al (2015) CD70: an emerging target in cancer immunotherapy. Pharmacol Ther 155:1–10CrossRefGoogle Scholar
  51. Jaiswal S et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jaiswal S et al (2010) Macrophages as mediators of tumor immunosurveillance. Trends Immunol 31(6):212–219CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jan M et al (2011) Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A 108(12):5009–5014CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jeon YK et al (2015) Cancer cell-associated cytoplasmic B7-H4 is induced by hypoxia through hypoxia-inducible factor-1alpha and promotes cancer cell proliferation. Biochem Biophys Res Commun 459(2):277–283CrossRefGoogle Scholar
  55. Jeong H et al (2019) Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Res 79(4):795–806PubMedGoogle Scholar
  56. Jiang B et al (2016) The co-stimulatory molecule B7-H3 promotes the epithelial-mesenchymal transition in colorectal cancer. Oncotarget 7(22):31755–31771PubMedPubMedCentralGoogle Scholar
  57. Jiang P et al (2019) CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics 9(10):2950–2966CrossRefPubMedPubMedCentralGoogle Scholar
  58. Jin L et al (2018) CD70, a novel target of CAR T-cell therapy for gliomas. Neuro Oncol 20(1):55–65CrossRefGoogle Scholar
  59. Kang X et al (2015) The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development. Nat Cell Biol 17(5):665–677CrossRefPubMedPubMedCentralGoogle Scholar
  60. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436CrossRefGoogle Scholar
  61. Katz HR (2006) Inhibition of inflammatory responses by leukocyte Ig-like receptors. Adv Immunol 91:251–272CrossRefGoogle Scholar
  62. Kaur S, Roberts DD (2011) CD47 applies the brakes to angiogenesis via vascular endothelial growth factor receptor-2. Cell Cycle 10(1):10–12CrossRefGoogle Scholar
  63. Kaur S et al (2016) A function-blocking CD47 antibody suppresses stem cell and EGF signaling in triple-negative breast cancer. Oncotarget 7(9):10133–10152CrossRefPubMedPubMedCentralGoogle Scholar
  64. Keir ME et al (2008) PD-1 and its ligands in tolerance and immunity. Ann Rev Immunol 26:677–704CrossRefGoogle Scholar
  65. Kikushige Y et al (2010) TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7(6):708–717CrossRefGoogle Scholar
  66. Kikushige Y et al (2015) A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 17(3):341–352CrossRefGoogle Scholar
  67. Kim JO et al (2003) NF-kappaB and AP-1 regulate activation-dependent CD137 (4-1BB) expression in T cells. FEBS Lett 541(1–3):163–170CrossRefGoogle Scholar
  68. Kim MJ et al (2008) Association of CD47 with natural killer cell-mediated cytotoxicity of head-and-neck squamous cell carcinoma lines. Tumour Biol 29(1):28–34CrossRefGoogle Scholar
  69. Kim JD, Kim CH, Kwon BS (2011) Regulation of mouse 4-1BB expression: multiple promoter usages and a splice variant. Mol Cells 31(2):141–149CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kim T et al (2013) Human LilrB2 is a beta-amyloid receptor and its murine homolog PirB regulates synaptic plasticity in an Alzheimer’s model. Science 341(6152):1399–1404CrossRefGoogle Scholar
  71. Kim HK et al (2014) B7-H4 downregulation induces mitochondrial dysfunction and enhances doxorubicin sensitivity via the cAMP/CREB/PGC1-alpha signaling pathway in HeLa cells. Pflugers Arch 466(12):2323–2338CrossRefGoogle Scholar
  72. Kleffel S et al (2015) Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell 162(6):1242–1256CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kortylewski M, Jove R, Yu H (2005) Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev 24(2):315–327CrossRefGoogle Scholar
  74. Krambeck AE et al (2006) B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci U S A 103(27):10391–10396CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A 86(6):1963–1967CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lee TK et al (2014) Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology 60(1):179–191CrossRefGoogle Scholar
  77. Li Y et al (2017a) B7-H3 promotes gastric cancer cell migration and invasion. Oncotarget 8(42):71725–71735PubMedPubMedCentralGoogle Scholar
  78. Li Y et al (2017b) B7-H3 promotes the proliferation, migration and invasiveness of cervical cancer cells and is an indicator of poor prognosis. Oncol Rep 38(2):1043–1050CrossRefGoogle Scholar
  79. Li Y et al (2017c) Overexpression of CD47 predicts poor prognosis and promotes cancer cell invasion in high-grade serous ovarian carcinoma. Am J Transl Res 9(6):2901–2910PubMedPubMedCentralGoogle Scholar
  80. Lim S et al (2016) Immunoregulatory Protein B7-H3 Reprograms Glucose Metabolism in Cancer Cells by ROS-Mediated Stabilization of HIF1alpha. Cancer Res 76(8):2231–2242CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lindberg FP et al (1993) Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in alpha v beta 3-dependent ligand binding. J Cell Biol 123(2):485–496CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lindberg FP et al (1996) Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding. J Cell Biol 134(5):1313–1322CrossRefPubMedPubMedCentralGoogle Scholar
  83. Liu J et al (2014) Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn Pathol 9:85CrossRefPubMedPubMedCentralGoogle Scholar
  84. Liu X et al (2015) ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget 6(25):21004–21015PubMedPubMedCentralGoogle Scholar
  85. Liu S et al (2017a) PD-1/PD-L1 interaction up-regulates MDR1/P-gp expression in breast cancer cells via PI3K/AKT and MAPK/ERK pathways. Oncotarget 8(59):99901–99912PubMedPubMedCentralGoogle Scholar
  86. Liu L et al (2017b) Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol 8:404CrossRefPubMedPubMedCentralGoogle Scholar
  87. Luo D et al (2017) B7-H3 regulates lipid metabolism of lung cancer through SREBP1-mediated expression of FASN. Biochem Biophys Res Commun 482(4):1246–1251CrossRefPubMedPubMedCentralGoogle Scholar
  88. Ma G et al (2011) Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells. Immunity 34(3):385–395CrossRefPubMedPubMedCentralGoogle Scholar
  89. Majeti R et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138(2):286–299CrossRefPubMedPubMedCentralGoogle Scholar
  90. Manna PP, Frazier WA (2004) CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 64(3):1026–1036CrossRefPubMedPubMedCentralGoogle Scholar
  91. Marimpietri D et al (2013) Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS ONE 8(9):e75054CrossRefPubMedPubMedCentralGoogle Scholar
  92. Mateo V et al (1999) CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nat Med 5(11):1277–1284CrossRefPubMedGoogle Scholar
  93. Mateo V et al (2002) Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization. Blood 100(8):2882–2890CrossRefPubMedGoogle Scholar
  94. Matozaki T et al (2009) Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 19(2):72–80CrossRefPubMedGoogle Scholar
  95. Monney L et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541CrossRefPubMedGoogle Scholar
  96. Mori Y et al (2008) Inhibitory immunoglobulin-like receptors LILRB and PIR-B negatively regulate osteoclast development. J Immunol 181(7):4742–4751CrossRefPubMedGoogle Scholar
  97. Naji A et al (2012) Neoplastic B-cell growth is impaired by HLA-G/ILT2 interaction. Leukemia 26(8):1889–1892CrossRefPubMedGoogle Scholar
  98. Nakaima Y et al (2013) CD137 is induced by the CD40 signal on chronic lymphocytic leukemia B cells and transduces the survival signal via NF-kappaB activation. PLoS ONE 8(5):e64425CrossRefPubMedPubMedCentralGoogle Scholar
  99. Ni L, Dong C (2017) New B7 family checkpoints in human cancers. Mol Cancer Ther 16(7):1203–1211CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nunes-Xavier CE et al (2016) Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget 7(6):6891–6901CrossRefPubMedPubMedCentralGoogle Scholar
  101. Palazon A et al (2012) The HIF-1alpha hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov 2(7):608–623CrossRefPubMedGoogle Scholar
  102. Palma C et al (2004) CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival. Int J Cancer 108(3):390–398CrossRefPubMedGoogle Scholar
  103. Palsson-McDermott EM et al (2017) Pyruvate Kinase M2 Is Required for the Expression of the Immune Checkpoint PD-L1 in Immune Cells and Tumors. Front Immunol 8:1300CrossRefPubMedPubMedCentralGoogle Scholar
  104. Park YP et al (2018) CD70 as a target for chimeric antigen receptor T cells in head and neck squamous cell carcinoma. Oral Oncol 78:145–150CrossRefPubMedPubMedCentralGoogle Scholar
  105. Pich C et al (2016) Melanoma-expressed CD70 is involved in invasion and metastasis. Br J Cancer 114(1):63–70CrossRefPubMedGoogle Scholar
  106. Pizon M et al (2018) B7-H3 on circulating epithelial tumor cells correlates with the proliferation marker, Ki-67, and may be associated with the aggressiveness of tumors in breast cancer patients. Int J Oncol 53(5):2289–2299PubMedGoogle Scholar
  107. Pollok KE, Kim SH, Kwon BS (1995) Regulation of 4-1BB expression by cell-cell interactions and the cytokines, interleukin-2 and interleukin-4. Eur J Immunol 25(2):488–494CrossRefPubMedGoogle Scholar
  108. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33(17):1974–1982CrossRefPubMedPubMedCentralGoogle Scholar
  109. Prokhorov A et al (2015) The immune receptor Tim-3 mediates activation of PI3 kinase/mTOR and HIF-1 pathways in human myeloid leukaemia cells. Int J Biochem Cell Biol 59:11–20CrossRefPubMedGoogle Scholar
  110. Qian Y et al (2013) B7-H4 enhances oncogenicity and inhibits apoptosis in pancreatic cancer cells. Cell Tissue Res 353(1):139–151CrossRefPubMedGoogle Scholar
  111. Qin W et al (2015) Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells. Oncotarget 6(37):39839–39854CrossRefPubMedPubMedCentralGoogle Scholar
  112. Rajendran S, Ho WT, Schwarz H (2016) CD137 signaling in Hodgkin and Reed-Sternberg cell lines induces IL-13 secretion, immune deviation and enhanced growth. Oncoimmunology 5(6):e1160188CrossRefPubMedPubMedCentralGoogle Scholar
  113. Rielland M et al (2014) Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest 124(5):2125–2135CrossRefPubMedPubMedCentralGoogle Scholar
  114. Riether C et al (2015) Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling. Sci Transl Med 7(298):298ra119Google Scholar
  115. Riether C et al (2017) CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med 214(2):359–380CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rivera A et al (2015) Expression of mouse CD47 on human cancer cells profoundly increases tumor metastasis in murine models. BMC Cancer 15:964CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sagawa M et al (2011) A new disulfide-linked dimer of a single-chain antibody fragment against human CD47 induces apoptosis in lymphoid malignant cells via the hypoxia inducible factor-1alpha pathway. Cancer Sci 102(6):1208–1215CrossRefGoogle Scholar
  118. Salceda S et al (2005) The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation. Exp Cell Res 306(1):128–141CrossRefGoogle Scholar
  119. Samaridis J, Colonna M (1997) Cloning of novel immunoglobulin superfamily receptors expressed on human myeloid and lymphoid cells: structural evidence for new stimulatory and inhibitory pathways. Eur J Immunol 27(3):660–665CrossRefPubMedPubMedCentralGoogle Scholar
  120. Seaman S et al (2017) Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell 31(4):501–515 e8Google Scholar
  121. Seaman S et al (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11(6):539–554CrossRefPubMedPubMedCentralGoogle Scholar
  122. Shan B et al (2016) TIM-3 promotes the metastasis of esophageal squamous cell carcinoma by targeting epithelial-mesenchymal transition via the Akt/GSK-3beta/Snail signaling pathway. Oncol Rep 36(3):1551–1561CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sick E et al (2011) Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia 59(2):308–319CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sloane DE et al (2004) Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood 104(9):2832–2839CrossRefPubMedPubMedCentralGoogle Scholar
  125. Suciu-Foca N et al (2007) Soluble Ig-like transcript 3 inhibits tumor allograft rejection in humanized SCID mice and T cell responses in cancer patients. J Immunol 178(11):7432–7441CrossRefPubMedPubMedCentralGoogle Scholar
  126. Sun Y et al (2008) Expression of Ig-like transcript 4 inhibitory receptor in human non-small cell lung cancer. Chest 134(4):783–788CrossRefPubMedPubMedCentralGoogle Scholar
  127. Tamai K et al (2014) Suppressive expression of CD274 increases tumorigenesis and cancer stem cell phenotypes in cholangiocarcinoma. Cancer Sci 105(6):667–674CrossRefPubMedPubMedCentralGoogle Scholar
  128. Tan, W et al (2019) Metformin mediates induction of miR-708 to inhibit self-renewal and chemoresistance of breast cancer stem cells through targeting CD47. J Cell Mol MedGoogle Scholar
  129. Tedla N et al (2008) Differential expression of leukocyte immunoglobulin-like receptors on cord-blood-derived human mast cell progenitors and mature mast cells. J Leukoc Biol 83(2):334–343CrossRefPubMedPubMedCentralGoogle Scholar
  130. Tekle C et al (2012) B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int J Cancer 130(10):2282–2290CrossRefPubMedGoogle Scholar
  131. Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461CrossRefPubMedPubMedCentralGoogle Scholar
  132. Tseng D et al (2013) Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci U S A 110(27):11103–11108CrossRefPubMedPubMedCentralGoogle Scholar
  133. Tu X et al (2019) PD-L1 (B7-H1) Competes with the RNA exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol Cell 74(6):1215–1226 e4Google Scholar
  134. Vinay DS, Kwon BS (2006) Immunotherapy targeting 4-1BB and its ligand. Int J Hematol 83(1):23–28CrossRefGoogle Scholar
  135. Vinay DS, Kwon BS (2011) 4-1BB signaling beyond T cells. Cell Mol Immunol 8(4):281–284CrossRefPubMedPubMedCentralGoogle Scholar
  136. Vinay DS, Kwon BS (2012) Immunotherapy of cancer with 4-1BB. Mol Cancer Ther 11(5):1062–1070CrossRefGoogle Scholar
  137. Wagtmann N et al (1997) A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Curr Biol 7(8):615–618CrossRefGoogle Scholar
  138. Wang Y et al (2015) PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol 32(8):212CrossRefGoogle Scholar
  139. Wang L et al (2016) The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Turmour Biol 37(11):14939–14947Google Scholar
  140. Warnecke-Eberz U et al (2016) Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumour Biol 37(5):6349–6358CrossRefGoogle Scholar
  141. Willingham SB et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109(17):6662–6667CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wu S et al (2016) Overexpression of B7-H3 correlates with aggressive clinicopathological characteristics in non-small cell lung cancer. Oncotarget 7(49):81750–81756PubMedPubMedCentralGoogle Scholar
  143. Xia F et al (2017) B7-H4 enhances the differentiation of murine leukemia-initiating cells via the PTEN/AKT/RCOR2/RUNX1 pathways. Leukemia 31(10):2260–2264CrossRefPubMedPubMedCentralGoogle Scholar
  144. Xiao Z et al (2015) Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett 360(2):302–309CrossRefPubMedPubMedCentralGoogle Scholar
  145. Xie C et al (2016) Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-kappaB pathway. Sci Rep 6:27528CrossRefPubMedPubMedCentralGoogle Scholar
  146. Xu C et al (2014) Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25(5):590–604CrossRefPubMedPubMedCentralGoogle Scholar
  147. Xu JF et al (2015) CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models. Oncotarget 6(27):23662–23670PubMedPubMedCentralGoogle Scholar
  148. Yang Y et al (2015) B7-H1 enhances proliferation ability of gastric cancer stem-like cells as a receptor. Oncol Lett 9(4):1833–1838CrossRefPubMedPubMedCentralGoogle Scholar
  149. Yoshida K et al (2015) CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med 4(9):1322–1333CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zhang Y et al (2012) Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep 5(4):910–916CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zhang L et al (2013) The costimulatory molecule B7-H4 promote tumor progression and cell proliferation through translocating into nucleus. Oncogene 32(46):5347–5358CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhang P et al (2015a) Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 6(15):13550–13563CrossRefPubMedPubMedCentralGoogle Scholar
  153. Zhang H et al (2015b) HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci U S A 112(45):E6215–E6223CrossRefPubMedPubMedCentralGoogle Scholar
  154. Zhang X et al (2017a) Expression and significance of B7-H3 and Tie-2 in the tumor vasculature of clear cell renal carcinoma. Onco Targets Ther 10:5417–5424CrossRefPubMedPubMedCentralGoogle Scholar
  155. Zhang X et al (2017b) B7-H4 promotes tumor growth and metastatic progression in lung cancer by impacting cell proliferation and survival. Oncotarget 8(12):18861–18871PubMedPubMedCentralGoogle Scholar
  156. Zhang Y et al (2017c) TIM-3 is a potential prognostic marker for patients with solid tumors: A systematic review and meta-analysis. Oncotarget 8(19):31705–31713PubMedPubMedCentralGoogle Scholar
  157. Zhao X et al (2013) B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int J Mol Med 31(2):283–291CrossRefGoogle Scholar
  158. Zhao H et al (2016) CD47 Promotes Tumor Invasion and Metastasis in Non-small Cell Lung Cancer. Sci Rep 6:29719CrossRefPubMedPubMedCentralGoogle Scholar
  159. Zheng J et al (2012) Inhibitory receptors bind ANGPTLs and support blood stem cells and leukaemia development. Nature 485(7400):656–660CrossRefPubMedPubMedCentralGoogle Scholar
  160. Zhi Y et al (2015) B7H1 expression and epithelial-to-mesenchymal transition phenotypes on colorectal cancer stem-like cells. PLoS ONE 10(8):e0135528CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic MedicineShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations