Small Molecular Immune Modulators as Anticancer Agents

  • Yongxin HanEmail author
  • Li Zhu
  • Wei Wu
  • Hui Zhang
  • Wei Hu
  • Liguang Dai
  • Yanqing Yang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1248)


After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies’ usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.


Small molecules Cytotoxic lymphocyte responses Drug screening Cancer immunotherapy Combination therapy 


Uncategorized References

  1. A study of SHR-1210 in combination with apatinib in advanced non-small cell lung cancer (NSCLC) (2017). Accessed 10 Sept 2019
  2. Abdel-Magid AF (2015) Inhibitors of the PD-1/PD-L1 pathway can mobilize the immune system: an innovative potential therapy for cancer and chronic infections. ACS Med Chem Lett 6(5):489–490CrossRefPubMedPubMedCentralGoogle Scholar
  3. Achek A, Yesudhas D, Choi S (2016) Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharmacal Res 39(8):1032–1049CrossRefGoogle Scholar
  4. Acurio J, Troncoso F, Bertoglia P, Salomon C, Aguayo C, Sobrevia L et al (2014) Potential role of A2B adenosine receptors on proliferation/migration of fetal endothelium derived from preeclamptic pregnancies. Biomed Res Int 2014:274507CrossRefPubMedPubMedCentralGoogle Scholar
  5. Adams S (2009) Toll-like receptor agonists in cancer therapy. Immunotherapy 1(6):949–964CrossRefPubMedPubMedCentralGoogle Scholar
  6. Adams JL, Smothers J, Srinivasan R, Hoos A (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 14(9):603–622CrossRefPubMedPubMedCentralGoogle Scholar
  7. Adeegbe DO, Liu S, Hattersley MM, Bowden M, Zhou CW, Li S et al (2018) BET bromodomain inhibition cooperates with PD-1 blockade to facilitate antitumor response in kras-mutant non-small cell lung cancer. Cancer Immunol Res 6(10):1234–1245CrossRefPubMedPubMedCentralGoogle Scholar
  8. Adlard AL, Dovedi SJ, Telfer BA, Koga-Yamakawa E, Pollard C, Honeychurch J et al (2014) A novel systemically administered Toll-like receptor 7 agonist potentiates the effect of ionizing radiation in murine solid tumor models. Int J Cancer 135(4):820–829CrossRefPubMedPubMedCentralGoogle Scholar
  9. Akhurst RJ, Hata A (2012) Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 11(10):790–811CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL et al (2014) Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510(7505):407–411CrossRefPubMedPubMedCentralGoogle Scholar
  11. Amin A, Plimack ER, Infante JR, Ernstoff M, Rini BI, Mcdermott DF et al (2014) 1052pdnivolumab (N) (ANTI-PD-1; BMS-936558, ONO-4538) in combination with sunitinib (S) or pazopanib (P) in patients (PTS) with metastatic renal cell carcinoma (MRCC). Ann Oncol 25(suppl 4):iv362–iv3Google Scholar
  12. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM et al (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20(5):620–634CrossRefPubMedPubMedCentralGoogle Scholar
  13. Arising International LLC patent: WO2018026971Google Scholar
  14. Ascierto PA, Ferrucci PF, Fisher R, Del Vecchio M, Atkinson V, Schmidt H et al (2019) Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat Med 25(6):941–946CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ashworth A, Lord CJ, Reis-Filho JS (2011) Genetic interactions in cancer progression and treatment. Cell 145(1):30–38CrossRefPubMedPubMedCentralGoogle Scholar
  16. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66. Oxford, England: 1990Google Scholar
  17. Atkinson JM, Rank KB, Zeng Y, Capen A, Yadav V, Manro JR et al (2015) Activating the Wnt/beta-catenin pathway for the treatment of melanoma-application of LY2090314, a novel selective inhibitor of glycogen synthase kinase-3. PloS One 10(4):e0125028CrossRefPubMedPubMedCentralGoogle Scholar
  18. Atwal D, Joshi KP, Ravilla R, Mahmoud F (2017) Pembrolizumab-induced pancytopenia: a case report. Perm J 21:17-004Google Scholar
  19. Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA et al (2006) EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol: Off J Am Soc Clin Oncol 24(2):268–273CrossRefGoogle Scholar
  20. Bam RA, Hansen D, Irrinki A, Mulato A, Jones GS, Hesselgesser J et al (2017) TLR7 Agonist GS-9620 is a potent inhibitor of acute HIV-1 infection in human peripheral blood mononuclear cells. Antimicrob Agents Chemother 61(1)Google Scholar
  21. Bang YJ et al (2018) Phase 1 study of CA-170, a first-in-class, orally available, small molecule immune checkpoint inhibitor (ICI) dually targeting VISTA and PDL1, in patients with advanced solid tumors or lymphomas. Poster # P341 SITC 2018Google Scholar
  22. Barber GN (2015) STING: infection, inflammation and cancer. Nat Rev Immunol 15(12):760–770CrossRefPubMedPubMedCentralGoogle Scholar
  23. Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K et al (2013) Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol 229(3):422–429CrossRefGoogle Scholar
  24. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32(14):1743–1751CrossRefGoogle Scholar
  25. Basu S, Yang J, Xu B, Magiera-Mularz K, Skalniak L, Musielak B et al (2019) Design, synthesis, evaluation, and structural studies of C2-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein-protein interaction. J Med Chem 62(15):7250–7263CrossRefGoogle Scholar
  26. Batchelor TT, Duda DG, di Tomaso E, Ancukiewicz M, Plotkin SR, Gerstner E et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol: Off J Am Soc Clin Oncol 28(17):2817–2823CrossRefGoogle Scholar
  27. Beavis PA, Upulie D, Christophe P, Chow MT, John LB, Christel D et al (2013) Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci USA 110(36):14711–14716CrossRefGoogle Scholar
  28. Bendell J, Tolcher AW, Jones S, Beeram M, Infante J, Larsen P et al (2013) A phase 1 study of ARRY-382, an oral inhibitor of colony-stimulating factor-1 receptor (CSF1R),in patients with advanced or metastatic cancer.
  29. Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79(4):173–189CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bhattarai S, Freundlieb M, Pippel J, Meyer A, Abdelrahman A, Fiene A et al (2015) alpha, beta-Methylene-ADP (AOPCP) derivatives and analogues: development of potent and selective ecto-5’-nucleotidase (CD73) inhibitors. J Med Chem 58(15):6248–6263CrossRefPubMedPubMedCentralGoogle Scholar
  31. Bibby MC, Double JA (1993) Flavone acetic acid–from laboratory to clinic and back. Anti-cancer Drugs 4(1):3–17CrossRefGoogle Scholar
  32. Bibby MC, Phillips RM, Double JA, Pratesi G (1991) Anti-tumour activity of flavone acetic acid (NSC 347512) in mice–influence of immune status. Br J Cancer 63(1):57–62CrossRefPubMedPubMedCentralGoogle Scholar
  33. BMS patents: WO2015160641; WO2017066277; WO2018009505; WO2018044963; WO2018183171Google Scholar
  34. Bong AB, Bonnekoh B, Franke I, Schon M, Ulrich J, Gollnick H (2002) Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 205(2):135–138. Basel, SwitzerlandGoogle Scholar
  35. Booth L, Roberts JL, Poklepovic A, Kirkwood J, Dent P (2017) HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget 8(47):83155–83170CrossRefPubMedPubMedCentralGoogle Scholar
  36. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB et al (2009) 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52(13):3994–4006CrossRefPubMedPubMedCentralGoogle Scholar
  37. Bourquin C, Pommier A, Hotz C (2019) Harnessing the immune system to fight cancer with Toll-like receptor and RIG-I-like receptor agonists. Pharmacol Res 104192Google Scholar
  38. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335CrossRefPubMedPubMedCentralGoogle Scholar
  39. Brandes AA, Carpentier AF, Kesari S, Sepulveda-Sanchez JM, Wheeler HR, Chinot O et al (2016) A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncol 18(8):1146–1156CrossRefPubMedPubMedCentralGoogle Scholar
  40. Broomfield SA, van der Most RG, Prosser AC, Mahendran S, Tovey MG, Smyth MJ et al (2009) Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. Journal of immunology 182(9):5217–5224. Baltimore, Md: 1950Google Scholar
  41. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434(7035):913–917CrossRefGoogle Scholar
  42. Butowski NA, Colman H, Groot JFD, Omuro AMP, Nayak L, Cloughesy TF et al (2014) A phase 2 study of orally administered PLX3397 in patients with recurrent glioblastoma. J Clin Oncol 32(15_suppl):2023Google Scholar
  43. Butowski N, Colman H, De Groot JF, Omuro AM, Nayak L, Wen PY et al (2016) Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy foundation early phase clinical trials consortium phase II study. Neuro-Oncol 18(4):557–564CrossRefGoogle Scholar
  44. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D (2017) Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 5(1):53CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cao K, Wang G, Li W, Zhang L, Wang R, Huang Y et al (2015) Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity. Oncogene 34(49):5960–5970CrossRefPubMedPubMedCentralGoogle Scholar
  46. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427CrossRefGoogle Scholar
  47. Carretero-Gonzalez A, Lora D, Ghanem I, Zugazagoitia J, Castellano D, Sepulveda JM et al (2018) Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors: a meta-analysis of randomized clinical trials. Oncotarget 9(9):8706–8715CrossRefPubMedPubMedCentralGoogle Scholar
  48. Cavlar T, Deimling T, Ablasser A, Hopfner KP, Hornung V (2013) Species-specific detection of the antiviral small-molecule compound CMA by STING. The EMBO J 32(10):1440–1450CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chae SS, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graaf AM et al (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res: Off J Am Assoc Cancer Res 16(14):3618–3627CrossRefGoogle Scholar
  50. Chatzinikolaou G, Karakasilioti I, Garinis GA (2014) DNA damage and innate immunity: links and trade-offs. Trends Immunol 35(9):429–435CrossRefGoogle Scholar
  51. Cheever MA (2008) Twelve immunotherapy drugs that could cure cancers. Immunol Rev 222:357–368CrossRefGoogle Scholar
  52. ChemoCentryx patents: WO2018005374; WO2019023575Google Scholar
  53. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets–what are the challenges? Nat Rev Drug Discov 12(4):265–286CrossRefPubMedPubMedCentralGoogle Scholar
  54. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y et al (2015) CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61(5):1591–1602. Baltimore, MdGoogle Scholar
  55. Chen J, Jiang CC, Jin L, Zhang XD (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol: Off J Eur Soc Med Oncol 27(3):409–416CrossRefGoogle Scholar
  56. Chen S, Song Z, Zhang A (2019) Small-molecule immuno-oncology therapy: advances, challenges and new directions. Curr Top Med Chem 19(3):180–185CrossRefGoogle Scholar
  57. Cheng B, Yuan WE, Su J, Liu Y, Chen J (2018) Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 157:582–598CrossRefGoogle Scholar
  58. Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48CrossRefPubMedPubMedCentralGoogle Scholar
  59. Christiansen AJ, West A, Banks KM, Haynes NM, Teng MW, Smyth MJ et al (2011) Eradication of solid tumors using histone deacetylase inhibitors combined with immune-stimulating antibodies. Proc Natl Acad Sci USA 108(10):4141–4146CrossRefPubMedPubMedCentralGoogle Scholar
  60. Chupak LS, Zheng X (2015) Compounds useful as immunomodulators. Bristol-Myers Squibb Company, 12 March 2015. WO2015034820A1Google Scholar
  61. Clark RA, Huang SJ, Murphy GF, Mollet IG, Hijnen D, Muthukuru M et al (2008) Human squamous cell carcinomas evade the immune response by down-regulation of vascular E-selectin and recruitment of regulatory T cells. J Exp Med 205(10):2221–2234CrossRefPubMedPubMedCentralGoogle Scholar
  62. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2(12):910–917CrossRefPubMedPubMedCentralGoogle Scholar
  63. Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55(5):1898–1903CrossRefPubMedPubMedCentralGoogle Scholar
  64. Cooper ZA, Juneja VR, Sage PT, Frederick DT, Piris A, Mitra D et al (2014) Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res 2(7):643–654CrossRefPubMedPubMedCentralGoogle Scholar
  65. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229(1):173–191CrossRefPubMedPubMedCentralGoogle Scholar
  66. Cummings J, Smyth JF (1989) Flavone 8-acetic acid: our current understanding of its mechanism of action in solid tumours. Cancer Chemother Pharmacol 24(5):269–272CrossRefPubMedPubMedCentralGoogle Scholar
  67. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K et al (2013) OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 73(24):7189–7198CrossRefPubMedPubMedCentralGoogle Scholar
  68. Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR et al (2015) PARP-1 activation requires local unfolding of an autoinhibitory domain. Mol Cell 60(5):755–768CrossRefPubMedPubMedCentralGoogle Scholar
  69. De Henau O, Rausch M, Winkler D, Campesato LF, Liu C, Cymerman DH et al (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature 539(7629):443–447CrossRefPubMedPubMedCentralGoogle Scholar
  70. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265CrossRefPubMedPubMedCentralGoogle Scholar
  71. Debnath B, Xu S, Grande F, Garofalo A, Neamati N (2013) Small molecule inhibitors of CXCR4. Theranostics 3(1):47–75CrossRefPubMedPubMedCentralGoogle Scholar
  72. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917CrossRefPubMedPubMedCentralGoogle Scholar
  73. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K et al (2018) CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov 8(2):216–233CrossRefPubMedPubMedCentralGoogle Scholar
  74. Desar IM, Jacobs JH, Hulsbergen-vandeKaa CA, Oyen WJ, Mulders PF, van der Graaf WT et al (2011) Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer 129(2):507–512CrossRefPubMedPubMedCentralGoogle Scholar
  75. Diab A et al (2019) Phase 1b: preliminary clinical activity and immune activation for NKRT-262 [TLR7/8 agonist] plus bempegaldesleukin (NKTR-214) [CD122-biased agonist] in patients (pts) with locally advance or metastatic solid tumors (REVEAL phse 1b.2 trial). In: ASCO-SITC clinical immuno-oncology symposium2019Google Scholar
  76. Dömling A. patents: WO2017118762; WO2019008152; WO2019008154; WO2019008156Google Scholar
  77. Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T et al (2016) Glycogen synthase kinase-3beta is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci 107(10):1363–1372CrossRefPubMedPubMedCentralGoogle Scholar
  78. Donati B, Lorenzini E, Ciarrocchi A (2018) BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer 17(1):164CrossRefPubMedPubMedCentralGoogle Scholar
  79. Dong P, Xiong Y, Yue J, Hanley SJB, Watari H (2018) Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol 8:386CrossRefPubMedPubMedCentralGoogle Scholar
  80. Dounay AB, Tuttle JB, Verhoest PR (2015) Challenges and opportunities in the discovery of new therapeutics targeting the kynurenine pathway. J Med Chem 58(22):8762–8782CrossRefPubMedPubMedCentralGoogle Scholar
  81. Du Four S, Maenhout SK, Niclou SP, Thielemans K, Neyns B, Aerts JL (2016) Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. Am J Cancer Res 6(11):2514–2531PubMedPubMedCentralGoogle Scholar
  82. Duan W, Wang H, Fan Q, Chen L, Huang H, Ran H (2018) Cystatin F involvement in adenosine A2A receptor-mediated neuroinflammation in BV2 microglial cells. Sci Rep 8(1):6820CrossRefPubMedPubMedCentralGoogle Scholar
  83. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res: Off J Am Assoc Cancer Res 17(8):2074–2080CrossRefGoogle Scholar
  84. Dudek AZ, Yunis C, Harrison LI, Kumar S, Hawkinson R, Cooley S et al (2007) First in human phase I trial of 852A, a novel systemic Toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 13(23):7119–7125CrossRefGoogle Scholar
  85. Dumitru CD, Antonysamy MA, Gorski KS, Johnson DD, Reddy LG, Lutterman JL et al (2009) NK1.1+ cells mediate the antitumor effects of a dual Toll-like receptor 7/8 agonist in the disseminated B16-F10 melanoma model. Cancer Immunol Immunother: CII 58(4):575–587Google Scholar
  86. Dummer R, Hauschild A, Becker JC, Grob JJ, Schadendorf D, Tebbs V et al (2008) An exploratory study of systemic administration of the Toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin Cancer Res: Off J Am Assoc Cancer Res 14(3):856–864CrossRefGoogle Scholar
  87. Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M et al (2016) MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44(3):609–621CrossRefPubMedPubMedCentralGoogle Scholar
  88. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451(7182):1111–1115CrossRefPubMedPubMedCentralGoogle Scholar
  89. Eleftheriadis T (2018) What may constrain the success of indoleamine 2,3-dioxygenase 1 inhibitors in cancer immunotherapy? Front Immunol 9:1879CrossRefPubMedPubMedCentralGoogle Scholar
  90. Emens L, Powderly J, Fong L, Brody J, Forde P, Hellmann M et al (2017) Abstract CT119: CPI-444, an oral adenosine A2a receptor (A2aR) antagonist, demonstrates clinical activity in patients with advanced solid tumors. Cancer Res 77(13 Supplement):CT119-CTGoogle Scholar
  91. Eng C, Kim TW, Bendell J, Argiles G, Tebbutt NC, Di Bartolomeo M et al (2019) Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 20(6):849–861CrossRefPubMedPubMedCentralGoogle Scholar
  92. Escors D, Gato-Canas M, Zuazo M, Arasanz H, Garcia-Granda MJ, Vera R et al (2018) The intracellular signalosome of PD-L1 in cancer cells. Signal Transduct Target Ther 3:26CrossRefPubMedPubMedCentralGoogle Scholar
  93. Eustermann S, Wu WF, Langelier MF, Yang JC, Easton LE, Riccio AA et al (2015) Structural basis of detection and signaling of DNA single-strand breaks by human PARP-1. Mol Cell 60(5):742–754CrossRefPubMedPubMedCentralGoogle Scholar
  94. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921CrossRefPubMedPubMedCentralGoogle Scholar
  95. Feng Zhiqiang patents: WO2017202273; WO2017202274; WO2017202275; WO2017202276; WO2017202277Google Scholar
  96. Fosdick A, Zheng J, Pflanz S, Frey CR, Hesselgesser J, Halcomb RL et al (2014) Pharmacokinetic and pharmacodynamic properties of GS-9620, a novel Toll-like receptor 7 agonist, demonstrate interferon-stimulated gene induction without detectable serum interferon at low oral doses. J Pharmacol Exp Ther 348(1):96–105CrossRefPubMedPubMedCentralGoogle Scholar
  97. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA (2003) BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Res 63(2):304–307PubMedPubMedCentralGoogle Scholar
  98. Furusato B, Mohamed A, Uhlen M, Rhim JS (2010) CXCR4 and cancer. Pathol Int 60(7):497–505CrossRefGoogle Scholar
  99. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277(28):25748–25755CrossRefGoogle Scholar
  100. Garber K (2009) Companies waver in efforts to target transforming growth factor beta in cancer. J Natl Cancer Inst 101(24):1664–1667CrossRefGoogle Scholar
  101. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z et al (2009) Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med 15(7):808–813CrossRefPubMedPubMedCentralGoogle Scholar
  102. Geisse J, Caro I, Lindholm J, Golitz L, Stampone P, Owens M (2004) Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol 50(5):722–733CrossRefGoogle Scholar
  103. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167(8):4747–4757. Baltimore, Md: 1950Google Scholar
  104. Gilead patents: WO2018195321; WO2019160882Google Scholar
  105. Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S et al (2009) Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 52(1):33–47Google Scholar
  106. Gnjatic S, Sawhney NB, Bhardwaj N (2010) Toll-like receptor agonists: are they good adjuvants? Cancer J 16(4):382–391. Sudbury, MassGoogle Scholar
  107. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB et al (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548(7668):471–475CrossRefPubMedPubMedCentralGoogle Scholar
  108. Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X et al (2005) Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol 174(3):1259–1268. Baltimore, Md: 1950Google Scholar
  109. Gray JE, Infante JR, Brail LH, Simon GR, Cooksey JF, Jones SF et al (2015) A first-in-human phase I dose-escalation, pharmacokinetic, and pharmacodynamic evaluation of intravenous LY2090314, a glycogen synthase kinase 3 inhibitor, administered in combination with pemetrexed and carboplatin. Investig New Drugs 33(6):1187–1196CrossRefGoogle Scholar
  110. Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 96(9):4868–4873CrossRefGoogle Scholar
  111. Guangzhou MaxiNovel patents: WO2018006795; WO2019128918Google Scholar
  112. Guangzhou Wellhealth BioPharmaceutical patents: CN109721527A; CN110092740A; CN110092745A; CN110092779A; CN110092799A; 2019Google Scholar
  113. Guardiola AR, Yao TP (2002) Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277(5):3350–3356CrossRefGoogle Scholar
  114. Gulati N, Beguelin W, Giulino-Roth L (2018) Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma 59(7):1574–1585CrossRefPubMedPubMedCentralGoogle Scholar
  115. Guzik K, Zak KM, Grudnik P, Magiera K, Musielak B, Torner R et al (2017) Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J Med Chem 60(13):5857–5867CrossRefPubMedPubMedCentralGoogle Scholar
  116. Guzik K, Tomala M, Muszak D, Konieczny M, Hec A, Blaszkiewicz U et al (2019) Development of the inhibitors that target the PD-1/PD-L1 interaction-a brief look at progress on small molecules, peptides and macrocycles. Molecules 24(11). Basel, SwitzerlandGoogle Scholar
  117. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588CrossRefPubMedPubMedCentralGoogle Scholar
  118. Hall JM, Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17(5):792–803. Baltimore, MdGoogle Scholar
  119. Hameed A, Ijaz S, Mohammad IS, Muhammad KS, Akhtar N, Khan HMS (2017) Aglycone solanidine and solasodine derivatives: a natural approach towards cancer. Biomed Pharmacother = Biomed Pharmacother 94:446–457Google Scholar
  120. Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544CrossRefPubMedPubMedCentralGoogle Scholar
  121. Harrison LI, Skinner SL, Marbury TC, Owens ML, Kurup S, McKane S et al (2004) Pharmacokinetics and safety of imiquimod 5% cream in the treatment of actinic keratoses of the face, scalp, or hands and arms. Arch Dermatol Res 296(1):6–11CrossRefPubMedPubMedCentralGoogle Scholar
  122. Hato T, Zhu AX, Duda DG (2016) Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy 8(3):299–313CrossRefPubMedPubMedCentralGoogle Scholar
  123. He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch FR (2018) TIM-3, a promising target for cancer immunotherapy. OncoTargets and therapy 11:7005–7009CrossRefPubMedPubMedCentralGoogle Scholar
  124. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5(4):387–393CrossRefPubMedPubMedCentralGoogle Scholar
  125. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3(2):196–200CrossRefGoogle Scholar
  126. Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST et al (2015) Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Dev Ther 9:4479–4499Google Scholar
  127. Hermida MA, Dinesh Kumar J, Leslie NR (2017) GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 65:5–15CrossRefPubMedPubMedCentralGoogle Scholar
  128. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E et al (2014) Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 6(237):237ra67Google Scholar
  129. Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA et al (2015) CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer Immunol Res 3(11):1257–1268CrossRefPubMedPubMedCentralGoogle Scholar
  130. Hodi FS, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Cowey CL et al (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19(11):1480–1492CrossRefGoogle Scholar
  131. Hogg SJ, Vervoort SJ, Deswal S, Ott CJ, Li J, Cluse LA et al (2017) BET-bromodomain inhibitors engage the host immune system and regulate expression of the immune checkpoint ligand PD-L1. Cell Rep 18(9):2162–2174CrossRefPubMedPubMedCentralGoogle Scholar
  132. Holm NT, Byrnes K, Li BD, Turnage RH, Abreo F, Mathis JM et al (2007) Elevated levels of chemokine receptor CXCR4 in HER-2 negative breast cancer specimens predict recurrence. J Surg Res 141(1):53–59CrossRefGoogle Scholar
  133. Horak F (2011) VTX-1463, a novel TLR8 agonist for the treatment of allergic rhinitis. Exp Opin Investig Drugs 20(7):981–986CrossRefGoogle Scholar
  134. Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109(43):17561–17566CrossRefGoogle Scholar
  135. Huang S, Wang Z, Zhou J, Huang J, Zhou L (2019) EZH2 inhibitor GSK126 suppresses anti-tumor immunity by driving 2 production of myeloid-derived suppressor cells. Cancer ResGoogle Scholar
  136. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458CrossRefGoogle Scholar
  137. Huck BR, Kotzner L, Urbahns K (2018) Small molecules drive big improvements in immuno-oncology therapies. Angew Chem Int Ed Engl 57(16):4412–4428CrossRefPubMedPubMedCentralGoogle Scholar
  138. Hughes PE, Caenepeel S, Wu LC (2016) Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol 37(7):462–476CrossRefPubMedPubMedCentralGoogle Scholar
  139. Hu-Lieskovan S, Mok S, Homet Moreno B, Tsoi J, Robert L, Goedert L, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAF(V600E) melanoma. Science translational medicine. 2015;7(279):279ra41Google Scholar
  140. Hume DA, MacDonald KP (2012) Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119(8):1810–1820CrossRefGoogle Scholar
  141. Hwang SJ, Carlos G, Chou S, Wakade D, Carlino MS, Fernandez-Penas P (2016) Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Res 26(4):413–416CrossRefGoogle Scholar
  142. Iannone R, Miele L, Maiolino P, Pinto A, Morello S (2013) Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15(12):1400–1409. New York, NYGoogle Scholar
  143. Iannone R, Miele L, Maiolino P, Pinto A, Morello S (2014) Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 4(2):172–181PubMedPubMedCentralGoogle Scholar
  144. Incyte patents: WO2017070089; WO2017087777; WO2017106634; WO2017112730; WO2017192916; WO2017192961; WO2017205464; WO2017222976; WO2018013789; WO2018044783; WO2018119224; WO2018119263; WO2018119266Google Scholar
  145. Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455(7213):674–678CrossRefPubMedPubMedCentralGoogle Scholar
  146. Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265):788–792CrossRefPubMedPubMedCentralGoogle Scholar
  147. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995CrossRefGoogle Scholar
  148. Jackson JJ, Ketcham JM, Younai A, Abraham B, Biannic B, Beck HP et al (2019) Discovery of a potent and selective CCR4 antagonist that inhibits treg trafficking into the tumor microenvironment. J Med Chem 62(13):6190–6213CrossRefGoogle Scholar
  149. Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622CrossRefPubMedPubMedCentralGoogle Scholar
  150. Jensen SM, Maston LD, Gough MJ, Ruby CE, Redmond WL, Crittenden M et al (2010) Signaling through OX40 enhances antitumor immunity. Semin Oncol 37(5):524–532CrossRefPubMedPubMedCentralGoogle Scholar
  151. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM et al (2017) PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res: Official J Am Assoc Cancer Res 23(14):3711–3720CrossRefGoogle Scholar
  152. Jin CH, Krishnaiah M, Sreenu D, Subrahmanyam VB, Rao KS, Lee HJ et al (2014) Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2 -yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-beta type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J Med Chem 57(10):4213–4238CrossRefGoogle Scholar
  153. Jubilant Biosys patent: WO2019087214Google Scholar
  154. Jung K, Heishi T, Incio J, Huang Y, Beech EY, Pinter M et al (2017a) Targeting CXCR4-dependent immunosuppressive Ly6C(low) monocytes improves antiangiogenic therapy in colorectal cancer. Proc Natl Acad Sci USA 114(39):10455CrossRefGoogle Scholar
  155. Jung K, Heishi T, Khan OF, Kowalski PS, Incio J, Rahbari NN et al (2017b) Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J Clin Investig 127(8):3039–3051CrossRefGoogle Scholar
  156. Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40CrossRefPubMedPubMedCentralGoogle Scholar
  157. Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K et al (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2:8CrossRefPubMedPubMedCentralGoogle Scholar
  158. Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S et al (2016) PI3Kgamma is a molecular switch that controls immune suppression. Nature 539(7629):437–442CrossRefPubMedPubMedCentralGoogle Scholar
  159. Kanzler H, Barrat FJ, Hessel EM, Coffman RL (2007) Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 13(5):552–559CrossRefGoogle Scholar
  160. Kao HY, Lee CH, Komarov A, Han CC, Evans RM (2002) Isolation and characterization of mammalian HDAC10, a novel histone deacetylase. J Biol Chem 277(1):187–193CrossRefGoogle Scholar
  161. Kawashita S, Aoyagi K, Yamanaka H, Hantani R, Naruoka S, Tanimoto A et al (2019) Symmetry-based ligand design and evaluation of small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 interaction. Bioorg Med Chem Lett 29(17):2464–2467CrossRefGoogle Scholar
  162. Kerr DJ, Kaye SB (1989) Flavone acetic acid–preclinical and clinical activity. Eur J Cancer Clin Oncol 25(9):1271–1272CrossRefGoogle Scholar
  163. Kerr WG, Chisholm JD (2019) The next generation of immunotherapy for cancer: small molecules could make big waves. J Immunol 202(1):11–19. Baltimore, Md: 1950Google Scholar
  164. Killock D (2019) BRAF+MEKi and ICI triplets show promise in melanoma. Nat Rev Clin Oncol 16(9):525CrossRefGoogle Scholar
  165. Kim S, Li L, Maliga Z, Yin Q, Wu H, Mitchison TJ (2013) Anticancer flavonoids are mouse-selective STING agonists. ACS Chem Biol 8(7):1396–1401CrossRefPubMedPubMedCentralGoogle Scholar
  166. Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL et al (2014) Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA 111(32):11774–11779CrossRefGoogle Scholar
  167. Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113(16):4476–4481CrossRefGoogle Scholar
  168. Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M (2016) Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 57:54–60CrossRefGoogle Scholar
  169. Kowanetz M, Ferrara N (2006) Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res: Off J Am Assoc Cancer Res 12(17):5018–5122CrossRefGoogle Scholar
  170. Kroon J, in ‘t Veld LS, Buijs JT, Cheung H, van der Horst G, van der Pluijm G (2014) Glycogen synthase kinase-3beta inhibition depletes the population of prostate cancer stem/progenitor-like cells and attenuates metastatic growth. Oncotarget 5(19):8986–8994Google Scholar
  171. Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32(5):654–668CrossRefPubMedPubMedCentralGoogle Scholar
  172. Lai X, Stiff A, Duggan M, Wesolowski R, Carson WE 3rd, Friedman A (2018) Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc Natl Acad Sci USA 115(21):5534–5539CrossRefPubMedPubMedCentralGoogle Scholar
  173. Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM et al (2013) GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology 144(7):1508-17, 1517.e1-10Google Scholar
  174. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876CrossRefPubMedPubMedCentralGoogle Scholar
  175. Lazorchak AS, Patterson T, Ding Y, Sasikumar PG, Sudarshan NS, Gowda NM et al (2018) An oral small molecule combination therapy targeting PD-L1, VISTA and tim-3 immune inhibitory checkpoints exhibits enhanced anti-tumor efficacy in pre-clinical models of cancer 2017. Accessed 8 Aug 2018
  176. Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P et al (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74(7):1933–1944CrossRefGoogle Scholar
  177. Le Page C, Rahimi K, Kobel M, Tonin PN, Meunier L, Portelance L et al (2018) Characteristics and outcome of the COEUR Canadian validation cohort for ovarian cancer biomarkers. BMC Cancer 18(1):347CrossRefPubMedPubMedCentralGoogle Scholar
  178. Lee J, Su EW, Zhu C, Hainline S, Phuah J, Moroco JA et al (2011) Phosphotyrosine-dependent coupling of tim-3 to T-cell receptor signaling pathways. Mol Cell Biol 31(19):3963–3974CrossRefPubMedPubMedCentralGoogle Scholar
  179. Li G, Margueron R, Hu G, Stokes D, Wang YH, Reinberg D (2010) Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell 38(1):41–53CrossRefPubMedPubMedCentralGoogle Scholar
  180. Li Z, Ju Z, Frieri M (2013) The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. Allergy Asthma Proc 34(1):e21–e26CrossRefPubMedPubMedCentralGoogle Scholar
  181. Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632CrossRefPubMedPubMedCentralGoogle Scholar
  182. Li K, Qu S, Chen X, Wu Q, Shi M (2017) Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci 18(2)Google Scholar
  183. Li X, Baek G, Ramanand SG, Sharp A, Gao Y, Yuan W et al (2018) BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer. Cell Rep 22(3):796–808CrossRefPubMedPubMedCentralGoogle Scholar
  184. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E et al (2008) Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320(5877):807–811. New York, NYGoogle Scholar
  185. Linch SN, McNamara MJ, Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 5:34CrossRefPubMedPubMedCentralGoogle Scholar
  186. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S et al (2014a) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74(7):1924–1932CrossRefPubMedPubMedCentralGoogle Scholar
  187. Lines JL, Sempere LF, Broughton T, Wang L, Noelle R (2014b) VISTA is a novel broad-spectrum negative checkpoint regulator for cancer immunotherapy. Cancer Immunol Res 2(6):510–517CrossRefPubMedPubMedCentralGoogle Scholar
  188. Littleson MM, Campbell AD, Clarke A, Dow M, Ensor G, Evans MC et al (2019) Synthetic route design of AZD4635, an A2AR antagonist. Org Process Res Dev 23(7):1407–1419CrossRefGoogle Scholar
  189. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD et al (2015a) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci USA 112(21):6682–6687CrossRefPubMedPubMedCentralGoogle Scholar
  190. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T et al (2015b) Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347(6227):aaa2630. New York, NYGoogle Scholar
  191. Lockwood WW, Zejnullahu K, Bradner JE, Varmus H (2012) Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA 109(47):19408–19413CrossRefPubMedPubMedCentralGoogle Scholar
  192. Long GV et al (2018a) 4-year survival and outcomes after cessation of pembrolizumab (pembro) after 2-years in patients (pts) with ipilimumab (ipi)-naive advanced melanoma in KEYNOTE-006. Am J Clin Oncol 36:9503Google Scholar
  193. Long GV, Eroglu Z, Infante J, Patel S, Daud A, Johnson DB et al (2018b) Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. J Clin Oncol: Off J Am Soc Clin Oncol 36(7):667–673Google Scholar
  194. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320–334CrossRefPubMedPubMedCentralGoogle Scholar
  195. Lovestone S, Boada M, Dubois B, Hull M, Rinne JO, Huppertz HJ et al (2015) A phase II trial of tideglusib in Alzheimer’s disease. J Alzheimer’s Dis: JAD 45(1):75–88CrossRefGoogle Scholar
  196. Lu H, Dietsch GN, Matthews MA, Yang Y, Ghanekar S, Inokuma M et al (2012) VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res: Off J Am Assoc Cancer Res 18(2):499–509CrossRefGoogle Scholar
  197. Luke JJ, Flaherty KT, Ribas A, Long GV (2017) Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 14(8):463–482CrossRefGoogle Scholar
  198. Ma F, Zhang J, Zhang J, Zhang C (2010) The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol 7(5):381–388CrossRefPubMedPubMedCentralGoogle Scholar
  199. Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K et al (2009) Deregulated GSK3{beta} sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res: Off J Am Assoc Cancer Res 15(22):6810–6819CrossRefGoogle Scholar
  200. Majewski S, Marczak M, Mlynarczyk B, Benninghoff B, Jablonska S (2005) Imiquimod is a strong inhibitor of tumor cell-induced angiogenesis. Int J Dermatol 44(1):14–19CrossRefGoogle Scholar
  201. Mandi Y, Vecsei L (2012) The kynurenine system and immunoregulation. J Neural Transm 119(2):197–209. Vienna, Austria: 1996Google Scholar
  202. Manzotti G, Ciarrocchi A, Sancisi V (2019) Inhibition of BET proteins and histone deacetylase (HDACs): crossing roads in cancer therapy. Cancers 11(3)Google Scholar
  203. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y (2018) Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11(1):39CrossRefPubMedPubMedCentralGoogle Scholar
  204. Massague J (2008) TGFbeta in cancer. Cell 134(2):215–230CrossRefPubMedPubMedCentralGoogle Scholar
  205. Mathuram TL, Ravikumar V, Reece LM, Karthik S, Sasikumar CS, Cherian KM (2016) Tideglusib induces apoptosis in human neuroblastoma IMR32 cells, provoking sub-G0/G1 accumulation and ROS generation. Environ Toxicol Pharmacol 46:194–205CrossRefGoogle Scholar
  206. Matsuo FS, Andrade MF, Loyola AM, da Silva SJ, Silva MJB, Cardoso SV et al (2018) Pathologic significance of AKT, mTOR, and GSK3beta proteins in oral squamous cell carcinoma-affected patients. Virchows Arch: Int J Pathol 472(6):983–997CrossRefGoogle Scholar
  207. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430(6996):226–231CrossRefGoogle Scholar
  208. Maxinovel’s orally active PD-l1 inhibitor demonstrating similar efficacy to PD-L1 antibody durvalumab. Press releaseGoogle Scholar
  209. McCleland ML, Mesh K, Lorenzana E, Chopra VS, Segal E, Watanabe C et al (2016) CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Investig 126(2):639–652CrossRefPubMedPubMedCentralGoogle Scholar
  210. McKeage MJ, Reck M, Jameson MB, Rosenthal MA, Gibbs D, Mainwaring PN et al (2009) Phase II study of ASA404 (vadimezan, 5,6-dimethylxanthenone-4-acetic acid/DMXAA) 1800 mg/m(2) combined with carboplatin and paclitaxel in previously untreated advanced non-small cell lung cancer. Lung Cancer 65(2):192–197. Amsterdam, NetherlandsGoogle Scholar
  211. MedPacto I (2019) First-in-human dose-escalation study of TEW-7197 monotherapy in subjects with advanced stage solid tumors. 8 Aug 2019
  212. Milhem M et al (2018) Intratumoral Toll-like receptor 9 (TLR9) agonist, CMP-001, in combination with pembrolizumab can reverse resistance to PD-1 inhibition in a phase 1b trial in subjects with advanced melanoma. In: AACR annual meeting, 17 April 2018Google Scholar
  213. Moskowitz CH, Younes A, de Vos S, Bociek RG, Gordon LI, Witzig TE et al (2012) CSF1R Inhibition by PLX3397 in patients with relapsed or refractory hodgkin lymphoma: results from a phase 2 single agent clinical trial. Blood 120:163Google Scholar
  214. Motzer RJ, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C et al (2018) IMmotion151: a randomized phase III study of atezolizumab plus bevacizumab vs sunitinib in untreated metastatic renal cell carcinoma (mRCC). J Clin Oncol 36(6_suppl):578Google Scholar
  215. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56CrossRefGoogle Scholar
  216. Musielak B, Kocik J, Skalniak L, Magiera-Mularz K, Sala D, Czub M et al (2019) CA-170 - a potent small-molecule PD-L1 inhibitor or not? Molecules 24(15). Basel, SwitzerlandGoogle Scholar
  217. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol: Off J Eur Soc Med Oncol 26(12):2375–2391CrossRefGoogle Scholar
  218. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E et al (2015) Targeting the TGFβ pathway for cancer therapy. Pharmacol Ther 147:22–31CrossRefGoogle Scholar
  219. Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M (2012) The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol 3:190CrossRefPubMedPubMedCentralGoogle Scholar
  220. Orillion A, Hashimoto A, Damayanti N, Shen L, Adelaiye-Ogala R, Arisa S et al (2017) Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res 23(17):5187–5201CrossRefGoogle Scholar
  221. Pal K, Cao Y, Gaisina IN, Bhattacharya S, Dutta SK, Wang E et al (2014) Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Therap 13(2):285–296CrossRefGoogle Scholar
  222. Palomo V, Martinez A (2017) Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Exp Opin Ther Pat 27(6):657–666CrossRefGoogle Scholar
  223. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299(5609):1033–1036. New York, NYGoogle Scholar
  224. Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E et al (2006) Cutting edge: the phosphoinositide 3-kinase p 110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J immunol 177(10):6598–6602. Baltimore, Md: 1950Google Scholar
  225. Peterson TE, Kirkpatrick ND, Huang Y, Farrar CT, Marijt KA, Kloepper J et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA 113(16):4470–4475CrossRefGoogle Scholar
  226. Pili R, Quinn DI, Hammers HJ, Monk P, George S, Dorff TB et al (2017) Immunomodulation by entinostat in renal cell carcinoma patients receiving high-dose interleukin 2: a multicenter, single-arm, phase I/II trial (NCI-CTEP#7870). Clin Cancer Res: Off J Am Assoc Cancer Res 23(23):7199–7208CrossRefGoogle Scholar
  227. Platten M, Nollen EAA, Rohrig UF, Fallarino F, Opitz CA (2019) Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov 18(5):379–401CrossRefGoogle Scholar
  228. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A et al (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(2):414–427.e13Google Scholar
  229. Polaris Pharmaceutical Inc.: WO2018045142Google Scholar
  230. Porcile C, Bajetto A, Barbero S, Pirani P, Schettini G (2004) CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N Y Acad Sci 1030:162–169CrossRefGoogle Scholar
  231. Qin M, Cao Q, Zheng S, Tian Y, Zhang H, Xie J et al (2019) Discovery of [1,2,4]Triazolo[4,3- a]pyridines as Potent inhibitors targeting the programmed cell death-1/programmed cell death-ligand 1 interaction. J Med Chem 62(9):4703–4715CrossRefGoogle Scholar
  232. Radhakrishnan VS et al (2018) Phase 2 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints VISTA and PD-1, in patients with advanced solid tumor and Hodgkin lymphoma. Poster # P714 SITC 2018Google Scholar
  233. Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT et al (2016) Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med 8(360):360ra135Google Scholar
  234. Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9(1):57–63CrossRefGoogle Scholar
  235. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241CrossRefGoogle Scholar
  236. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY et al (2018) Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 564(7736):439–443CrossRefGoogle Scholar
  237. Redmond WL, Ruby CE, Weinberg AD (2009) The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit Rev Immunol 29(3):187–201CrossRefPubMedPubMedCentralGoogle Scholar
  238. Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H, Germain RN et al (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J Exp Med 186(11):1819–1829Google Scholar
  239. Ribas A, Lawrence D, Atkinson V, Agarwal S, Miller WH Jr, Carlino MS et al (2019) Combined BRAF and MEK inhibition with PD-1 blockade immunotherapy in BRAF-mutant melanoma. Nat Med 25(6):936–940CrossRefGoogle Scholar
  240. Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V et al (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25(6):846–859CrossRefPubMedPubMedCentralGoogle Scholar
  241. Rizzieri DA, Cooley S, Odenike O, Moonan L, Chow KH, Jackson K et al (2016) An open-label phase 2 study of glycogen synthase kinase-3 inhibitor LY2090314 in patients with acute leukemia. Leuk Lymphoma 57(8):1800–1806CrossRefPubMedPubMedCentralGoogle Scholar
  242. Rook AH, Gelfand JM, Wysocka M, Troxel AB, Benoit B, Surber C et al (2015) Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood 126(12):1452–1461CrossRefPubMedPubMedCentralGoogle Scholar
  243. Rozeman EA, Blank CU (2019) Combining checkpoint inhibition and targeted therapy in melanoma. Nature Med 25(6):879–882CrossRefPubMedPubMedCentralGoogle Scholar
  244. Sahin I, Eturi A, De Souza A, Pamarthy S, Tavora F, Giles FJ et al (2019) Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biol Ther 20(8):1047–1056CrossRefGoogle Scholar
  245. Salazar LG, Lu H, Reichow JL, Childs JS, Coveler AL, Higgins DM et al (2017) Topical imiquimod plus nab-paclitaxel for breast cancer cutaneous metastases: a phase 2 clinical trial. JAMA oncology 3(7):969–973CrossRefPubMedPubMedCentralGoogle Scholar
  246. Sancisi V, Manzotti G, Gugnoni M, Rossi T, Gandolfi G, Gobbi G et al (2017) RUNX2 expression in thyroid and breast cancer requires the cooperation of three non-redundant enhancers under the control of BRD4 and c-JUN. Nucl Acids Res 45(19):11249–11267CrossRefPubMedPubMedCentralGoogle Scholar
  247. Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D et al (2013) Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res: Off J Am Assoc Cancer Res 19(13):3404–3415CrossRefGoogle Scholar
  248. Sasikumar P, Shrimali R, Adurthi S, Ramachandra R, Satyam L, Dhudashiya A et al (2013) A novel peptide therapeutic targeting PD1 immune checkpoint with equipotent antagonism of both ligands and a potential for better management of immune-related adverse events. J Immunother Cancer 1(Suppl 1):O24CrossRefPubMedPubMedCentralGoogle Scholar
  249. Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson T Jr et al (2004) Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorganic Med Chem Lett 14(13):3581–3584CrossRefGoogle Scholar
  250. Schon MP, Schon M (2008) TLR7 and TLR8 as targets in cancer therapy. Oncogene 27(2):190–199CrossRefGoogle Scholar
  251. Schon M, Bong AB, Drewniok C, Herz J, Geilen CC, Reifenberger J et al (2003) Tumor-selective induction of apoptosis and the small-molecule immune response modifier imiquimod. J Natl Cancer Inst 95(15):1138–1149CrossRefGoogle Scholar
  252. Schutte M, Hruban RH, Geradts J, Maynard R, Hilgers W, Rabindran SK et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57(15):3126–3130PubMedGoogle Scholar
  253. Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J et al (2019) Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov 9(5):646–661CrossRefGoogle Scholar
  254. Sengupta S, Guha P, Katz S, Sampath P (2015) Inhibition of GSK3beta leads to increased survival, proliferation and memory phenotype generation of GBM-specific CAR T cells (VAC5P.1125)Google Scholar
  255. Sengupta S, Katz SC, Sengupta S, Sampath P (2018) Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term survival and memory generation in antigen-specific CAR-T cells. Cancer Lett 433:131–139CrossRefPubMedPubMedCentralGoogle Scholar
  256. Shen L, Orillion A, Pili R (2016) Histone deacetylase inhibitors as immunomodulators in cancer therapeutics. Epigenomics 8(3):415–428CrossRefGoogle Scholar
  257. Shenzhen Chipscreen Biosciences patent: CN108250159A, 2018Google Scholar
  258. Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677. New York, NYGoogle Scholar
  259. Sherr CJ, Rettenmier CW, Sacca R, Roussel MF, Look AT, Stanley ER (1985) The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41(3):665–676CrossRefGoogle Scholar
  260. Shi M, Chen X, Ye K, Yao Y, Li Y (2016) Application potential of Toll-like receptors in cancer immunotherapy: systematic review. Medicine 95(25):e3951CrossRefPubMedPubMedCentralGoogle Scholar
  261. Singh M, Khong H, Dai Z, Huang XF, Wargo JA, Cooper ZA et al (2014) Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J Immunol 193(9):4722–4731. Baltimore, Md: 1950Google Scholar
  262. Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M et al (2017) Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 8(42):72167–72181CrossRefPubMedPubMedCentralGoogle Scholar
  263. Smirnov D, Schmidt JJ, Capecchi JT, Wightman PD (2011) Vaccine adjuvant activity of 3 M-052: an imidazoquinoline designed for local activity without systemic cytokine induction. Vaccine 29(33):5434–5442CrossRefGoogle Scholar
  264. Smith WM, Purvis IJ, Bomstad CN, Labak CM, Velpula KK, Tsung AJ et al (2019) Therapeutic targeting of immune checkpoints with small molecule inhibitors. Am J Transl Res 11(2):529–541PubMedPubMedCentralGoogle Scholar
  265. Smulson M, Istock N, Ding R, Cherney B (1994) Deletion mutants of poly(ADP-ribose) polymerase support a model of cyclic association and dissociation of enzyme from DNA ends during DNA repair. Biochemistry 33(20):6186–6191CrossRefGoogle Scholar
  266. So EY, Ouchi T (2010) The application of Toll like receptors for cancer therapy. Int J Biol Sci 6(7):675–681CrossRefPubMedPubMedCentralGoogle Scholar
  267. Sobhani N, D’Angelo A, Pittacolo M, Roviello G, Miccoli A, Corona SP et al (2019) Updates on the CDK4/6 inhibitory strategy and combinations in breast cancer Cells 8(4)Google Scholar
  268. Song Y, Margolles-Clark E, Bayer A, Buchwald P (2014) Small-molecule modulators of the OX40-OX40 ligand co-stimulatory protein-protein interaction. Br J Pharmacol 171(21):4955–4969CrossRefPubMedPubMedCentralGoogle Scholar
  269. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41(1):185–198CrossRefGoogle Scholar
  270. Stary G, Bangert C, Tauber M, Strohal R, Kopp T, Stingl G (2007) Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J Exp Med 204(6):1441–1451CrossRefPubMedPubMedCentralGoogle Scholar
  271. Stewart TJ, Smyth MJ (2011) Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev 30(1):125–140CrossRefGoogle Scholar
  272. Sullivan RJ, Hamid O, Gonzalez R, Infante JR, Patel MR, Hodi FS et al (2019) Atezolizumab plus cobimetinib and vemurafenib in BRAF-mutated melanoma patients. Nat Med 25(6):929–935CrossRefGoogle Scholar
  273. Sun Hongbin patent: CN109776445A (2019)Google Scholar
  274. Sun W, Li Y, Chen L, Chen H, You F, Zhou X et al (2009) ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 106(21):8653–8658CrossRefGoogle Scholar
  275. Sun C, Mezzadra R, Schumacher TN (2018) Regulation and function of the PD-L1 checkpoint. Immunity 48(3):434–452CrossRefGoogle Scholar
  276. Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao Y et al (2015) CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 21(16):3794–3805CrossRefGoogle Scholar
  277. Szeimies RM, Bichel J, Ortonne JP, Stockfleth E, Lee J, Meng TC (2008) A phase II dose-ranging study of topical resiquimod to treat actinic keratosis. Br J Dermatol 159(1):205–210CrossRefGoogle Scholar
  278. Tamimi RM, Brugge JS, Freedman ML, Miron A, Iglehart JD, Colditz GA et al (2008) Circulating colony stimulating factor-1 and breast cancer risk. Cancer Res 68(1):18–21CrossRefPubMedPubMedCentralGoogle Scholar
  279. Taniguchi Y (2016) The bromodomain and extra-terminal domain (BET) family: functional anatomy of BET paralogous proteins. Int J Mol Sci 17(11)Google Scholar
  280. Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE (2016) Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity 44(2):274–286CrossRefPubMedPubMedCentralGoogle Scholar
  281. Taylor A, Rothstein D, Rudd CE (2018) Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res 78(3):706–717CrossRefGoogle Scholar
  282. Teo ZL, Versaci S, Dushyanthen S, Caramia F, Savas P, Mintoff CP et al (2017) Combined CDK4/6 and PI3Kalpha inhibition is synergistic and immunogenic in triple-negative breast cancer. Cancer Res 77(22):6340–6352CrossRefGoogle Scholar
  283. Tinostamustine and Nivolumab in advanced melanoma (ENIgMA) (2019). Accessed 10 Sept 2019
  284. Tolcher A, Hong D, Sullivan R, Mier J, Shapiro G, Chmielowski B et al (2017) Abstract CT089: IPI-549-01 - a phase 1/1b, first-in-human study of IPI-549, a PI3K-γ inhibitor, as monotherapy and in combination with nivolumab in patients with advanced solid tumors. Cancer Res 77(13 Supplement):CT089-CTGoogle Scholar
  285. Tolosa E, Litvan I, Hoglinger GU, Burn D, Lees A, Andres MV et al (2014) A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord: Off J Mov Dis Soc 29(4):470–478CrossRefGoogle Scholar
  286. Tomai MA, Miller RL, Lipson KE, Kieper WC, Zarraga IE, Vasilakos JP (2007) Resiquimod and other immune response modifiers as vaccine adjuvants. Exp Rev Vaccines 6(5):835–847CrossRefGoogle Scholar
  287. Tong JJ, Liu J, Bertos NR, Yang XJ (2002) Identification of HDAC10, a novel class II human histone deacetylase containing a leucine-rich domain. Nucl Acids Res 30(5):1114–1123CrossRefGoogle Scholar
  288. Toogood PL (2018) Small molecule immuno-oncology therapeutic agents. Bioorganic Med Chem Lett 28(3):319–329CrossRefGoogle Scholar
  289. Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3(2):133–146CrossRefGoogle Scholar
  290. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274CrossRefGoogle Scholar
  291. Valcarcel D, Verma A, Platzbecker U, Santini V, Giagounidis A, Díez-Campelo M et al (2015) Phase 2 study of monotherapy galunisertib (LY2157299 monohydrate) in very low-, low-, and intermediate-risk patients with myelodysplastic syndromes. Blood 126:1669CrossRefGoogle Scholar
  292. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629CrossRefPubMedPubMedCentralGoogle Scholar
  293. Varmavuo V, Mantymaa P, Kuittinen T, Nousiainen T, Jantunen E (2012) Pre-emptive plerixafor injection increases blood neutrophil, lymphocyte and monocyte counts in addition to CD34+ counts in patients with non-Hodgkin lymphoma mobilizing poorly with chemotherapy plus G-CSF: potential implications for apheresis and graft composition. Transfus Apher Sci: Off J World Apher Assoc: Off J Eur Soc Haemapheresis 46(3):257–262Google Scholar
  294. Vasan N, Dickler MN (2017) State-of-the-art update: CDK4/6 inhibitors in ER+ metastatic breast cancer. Am J Hematol Oncol 13(4):16–22Google Scholar
  295. Vecsei L, Szalardy L, Fulop F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12(1):64–82CrossRefPubMedPubMedCentralGoogle Scholar
  296. Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457CrossRefPubMedPubMedCentralGoogle Scholar
  297. Vilalta Colomer M, Li, S, Malathong V, Lange C, McMurtrie D, Yang J, Roth H, McMahon J, Campbell JJ, Ertl LS, Ong R, Wang Y, Zhao N, Yau S, Dang T, Zhang P, Schall TJ, Singh R (2018) A small molecule human PD-1/PD-L1 inhibitor promotes T cell immune activation and reduces tumor growth in a preclinical model. Ann Oncol 29(Supplement 10):x24-x38Google Scholar
  298. von Tresckow B, Morschhauser F, Ribrag V, Topp MS, Chien C, Seetharam S et al (2013) A phase 1 study of JNJ-40346527, a colony stimulating factor-1 receptor (CSF-1R) inhibitor, in patients with relapsed or refractory Hodgkin lymphoma. Blood 122:1812CrossRefGoogle Scholar
  299. Walz A, Ugolkov A, Chandra S, Kozikowski A, Carneiro BA, O’Halloran TV et al (2017) Molecular pathways: revisiting glycogen synthase kinase-3beta as a target for the treatment of cancer. Clin Cancer Res: Off J Am Assoc Cancer Res 23(8):1891–1897CrossRefGoogle Scholar
  300. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML (2008) Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 455(7217):1205–1209CrossRefPubMedPubMedCentralGoogle Scholar
  301. Wang L, Fan J, Thompson LF, Zhang Y, Shin T, Curiel TJ et al (2011) CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Investig 121(6):2371–2382CrossRefPubMedPubMedCentralGoogle Scholar
  302. Wang S, Pike AM, Lee SS, Strong MA, Connelly CJ, Greider CW (2017) BRD4 inhibitors block telomere elongation. Nucl Acids Res 45(14):8403–8410CrossRefPubMedPubMedCentralGoogle Scholar
  303. Weinmann H (2016) Cancer immunotherapy: selected targets and small-molecule modulators. ChemMedChem 11(5):450–466CrossRefPubMedPubMedCentralGoogle Scholar
  304. Weitzenfeld P, Ben-Baruch A (2014) The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett 352(1):36–53CrossRefPubMedPubMedCentralGoogle Scholar
  305. Wendt MK, Tian M, Schiemann WP (2012) Deconstructing the mechanisms and consequences of TGF-beta-induced EMT during cancer progression. Cell Tissue Res 347(1):85–101CrossRefPubMedPubMedCentralGoogle Scholar
  306. Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMedGoogle Scholar
  307. Witt PL, Ritch PS, Reding D, McAuliffe TL, Westrick L, Grossberg SE et al (1993) Phase I trial of an oral immunomodulator and interferon inducer in cancer patients. Cancer Res 53(21):5176–5180PubMedGoogle Scholar
  308. WO2015033301A1 (2015) 1,2,4-oxadiazole and 1,3,4-thiadiazole derivatives and immunomodulators. PCT Int ApplGoogle Scholar
  309. WO2015033299A1 (2015) 1,2,4-oxadiazole derivatives and immunomodulators. PCT Int ApplGoogle Scholar
  310. Wolf IH, Smolle J, Binder B, Cerroni L, Richtig E, Kerl H (2003) Topical imiquimod in the treatment of metastatic melanoma to skin. Arch Dermatol 139(3):273–276CrossRefGoogle Scholar
  311. Wolf IH, Kodama K, Cerroni L, Kerl H (2007) Nature of inflammatory infiltrate in superficial cutaneous malignancies during topical imiquimod treatment. Am J Dermatopathol 29(3):237–241CrossRefPubMedPubMedCentralGoogle Scholar
  312. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY et al (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41(5):830–842CrossRefPubMedPubMedCentralGoogle Scholar
  313. Woodard LE, Nimmagadda S (2011) CXCR4-based imaging agents. J nucl Med: Off Publ Soc Nucl Med 52(11):1665–1669CrossRefGoogle Scholar
  314. Woodgett JR (1990) Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9(8):2431–2438CrossRefPubMedPubMedCentralGoogle Scholar
  315. Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J (2015) HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 blockade. Cancer Immunol Res 3(12):1375–1385CrossRefPubMedPubMedCentralGoogle Scholar
  316. Wright Z, Brown A (2017) High-grade neutropenia in a patient successfully treated with nivolumab for refractory primary mediastinal B-cell lymphoma. Blood Adv 1(17):1306–1308CrossRefPubMedPubMedCentralGoogle Scholar
  317. Wu J, Chen ZJ (2014) Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488CrossRefGoogle Scholar
  318. Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J et al (2017) Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res 5(1):17–28CrossRefGoogle Scholar
  319. Wyce A, Ganji G, Smitheman KN, Chung CW, Korenchuk S, Bai Y et al (2013) BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PloS One 8(8):e72967CrossRefPubMedPubMedCentralGoogle Scholar
  320. Yang XJ, Gregoire S (2005) Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25(8):2873–2884CrossRefPubMedPubMedCentralGoogle Scholar
  321. Yang Q, Modi P, Newcomb T, Queva C, Gandhi V (2015) Idelalisib: first-in-class PI3K delta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res: Off J Am Assoc Cancer Res 21(7):1537–1542CrossRefGoogle Scholar
  322. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in xenopus embryos by glycogen synthase kinase 3. Genes Dev 10(12):1443–1454CrossRefGoogle Scholar
  323. Young RJ, Waldeck K, Martin C, Foo JH, Cameron DP, Kirby L et al (2014) Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res 27(4):590–600CrossRefGoogle Scholar
  324. Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Domling A et al (2016) Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 7(21):30323–30335CrossRefPubMedPubMedCentralGoogle Scholar
  325. Zarganes-Tzitzikas T, Konstantinidou M, Gao Y, Krzemien D, Zak K, Dubin G et al (2016) Inhibitors of programmed cell death 1 (PD-1): a patent review (2010–2015). Expert Opin Ther Pat 26(9):973–977CrossRefPubMedPubMedCentralGoogle Scholar
  326. Zhang QW, Liu L, Gong CY, Shi HS, Zeng YH, Wang XZ et al (2012) Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PloS One 7(12):e50946CrossRefPubMedPubMedCentralGoogle Scholar
  327. Zhang L, Dewan V, Yin H (2017) Discovery of small molecules as multi-Toll-like receptor agonists with proinflammatory and anticancer activities. J Med Chem 60(12):5029–5044CrossRefGoogle Scholar
  328. Zhang JY, Zhao YL, Lv YP, Cheng P, Chen W, Duan M et al (2018) Modulation of CD8(+) memory stem T cell activity and glycogen synthase kinase 3beta inhibition enhances anti-tumoral immunity in gastric cancer. Oncoimmunology 7(4):e1412900CrossRefPubMedPubMedCentralGoogle Scholar
  329. Zhao Y, Adjei AA (2015) Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. The Oncologist 20(6):660–673CrossRefPubMedPubMedCentralGoogle Scholar
  330. Zhao Y, Liu Q, Acharya P, Stengel KR, Sheng Q, Zhou X et al (2016) High-resolution mapping of RNA polymerases identifies mechanisms of sensitivity and resistance to BET inhibitors in t(8;21) AML. Cell Rep 16(7):2003–2016CrossRefPubMedPubMedCentralGoogle Scholar
  331. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J et al (2016) Nuclear GSK3beta promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 18(9):954–966CrossRefPubMedPubMedCentralGoogle Scholar
  332. Zhu H, Bengsch F, Svoronos N, Rutkowski MR, Bitler BG, Allegrezza MJ et al (2016) bet bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression. Cell Rep 16(11):2829–2837CrossRefPubMedPubMedCentralGoogle Scholar
  333. Zhu MMT, Dancsok AR, Nielsen TO (2019) Indoleamine dioxygenase inhibitors: clinical rationale and current development. Curr Oncol Rep 21(1):2CrossRefGoogle Scholar
  334. Zhuang YW, Wu CE, Zhou JY, Chen X, Wu J, Jiang S et al (2017) Solasodine inhibits human colorectal cancer cells through suppression of the AKT/glycogen synthase kinase-3beta/beta-catenin pathway. Cancer Sci 108(11):2248–2264CrossRefPubMedPubMedCentralGoogle Scholar
  335. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J et al (2017) The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep 20(4):854–867CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yongxin Han
    • 1
    Email author
  • Li Zhu
    • 2
  • Wei Wu
    • 2
  • Hui Zhang
    • 2
  • Wei Hu
    • 2
  • Liguang Dai
    • 2
  • Yanqing Yang
    • 2
  1. 1.Lapam Capital LLC.BeijingChina
  2. 2.PrimeGene (Beijing) Co., Ltd.BeijingChina

Personalised recommendations