Mechanisms Inspired Targeting Peptides

  • Yunsheng YuanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1248)


Peptides, as a large group of molecules, are composed of amino acid residues and can be divided into linear or cyclic peptides according to the structure. Over 13,000 molecules of natural peptides have been found and many of them have been well studied. In artificial peptide libraries, the number of peptide diversity could be up to 1 × 1013. Peptides have more complex structures and higher affinity to target proteins comparing with small molecular compounds. Recently, the development of targeting cancer immune checkpoint (CIP) inhibitors is having a very important role in tumor therapy. Peptides targeting ligands or receptors in CIP have been designed based on three-dimensional structures of target proteins or directly selected by random peptide libraries in biological display systems. Most of these targeting peptides work as inhibitors of protein–protein interaction and improve CD8+ cytotoxic T-lymphocyte (CTL) activation in the tumor microenvironment, for example, PKHB1, Ar5Y4 and TPP1. Peptides could be designed to regulate CIP protein degradation in vivo, such as PD-LYSO and PD-PALM. Besides its use in developing therapeutic drugs for targeting CIP, targeting peptides could be used in drug’s targeted delivery and diagnosis in tumor immune therapy.


Peptides Targeted protein degradation Targeted delivery Peptidic inhibitors Random peptide libraries 



I thank Meiqi Zhou, Xinyi Xiao, and Jinlin Tang for helping me to organize illustrations in this chapter. This work was supported by National Natural Science Foundation of China (31671388), National Science and Technology Major Project (2019ZX09201001-003-008), Shanghai Pujiang Program (16PJ1405000) and Shanghai Jiao Tong University Medicine-engineering Joint funding (YG2019ZDA04, YG2019QNA50).


  1. Abril-Rodriguez G, Ribas A (2017) SnapShot: immune checkpoint inhibitors. Cancer Cell 31(6):848–848.e1Google Scholar
  2. Alam N et al (2017) High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput Biol 13(12):e1005905CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andre P et al (2018) Anti-NKG2A mAb Is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175(7):1731–1743.e13Google Scholar
  4. Antes I (2010) DynaDock: a new molecular dynamics-based algorithm for protein-peptide docking including receptor flexibility. Proteins 78(5):1084–1104CrossRefGoogle Scholar
  5. Araste F et al (2018) Peptide-based targeted therapeutics: focus on cancer treatment. J Control Release 292:141–162CrossRefGoogle Scholar
  6. Atanasov G et al (2018) TIE2-expressing monocytes and M2-polarized macrophages impact survival and correlate with angiogenesis in adenocarcinoma of the pancreas. Oncotarget 9(51):29715–29726CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bruzzoni-Giovanelli H et al (2018) Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today 23(2):272–285CrossRefGoogle Scholar
  8. Calvo Tardon M et al (2019) Peptides as cancer vaccines. Curr Opin Pharmacol 47:20–26CrossRefGoogle Scholar
  9. Ciemny M et al (2018) Protein-peptide docking: opportunities and challenges. Drug Discov Today 23(8):1530–1537CrossRefGoogle Scholar
  10. Cieslewicz M et al (2013) Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci USA 110(40):15919–15924CrossRefGoogle Scholar
  11. de la Fuente-Nunez C et al (2017) Antimicrobial peptides: role in human disease and potential as immunotherapies. Pharmacol Ther 178:132–140CrossRefGoogle Scholar
  12. Donsky E, Wolfson HJ (2011) PepCrawler: a fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics 27(20):2836–2842CrossRefGoogle Scholar
  13. Dougherty PG, Qian Z, Pei D (2017) Macrocycles as protein-protein interaction inhibitors. Biochem J 474(7):1109–1125CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duffy FJ et al (2015) Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides. J Chem Inf Model 55(3):600–613CrossRefGoogle Scholar
  15. Eldridge MD et al (1997) Empirical scoring functions: I. the development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11(5):425–445Google Scholar
  16. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128CrossRefGoogle Scholar
  17. Gang D, Kim DW, Park HS (2018) Cyclic peptides: promising scaffolds for biopharmaceuticals. genes (Basel) 9(11)Google Scholar
  18. Gogoladze G et al (2014) DBAASP: database of antimicrobial activity and structure of peptides. FEMS Microbiol Lett 357(1):63–68CrossRefGoogle Scholar
  19. Haanen JB, Cerundolo V (2018) NKG2A, a new kid on the immune checkpoint block. Cell 175(7):1720–1722CrossRefGoogle Scholar
  20. Hambardzumyan D, Gutmann DH, Kettenmann H (2016) The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 19(1):20–27CrossRefPubMedPubMedCentralGoogle Scholar
  21. Horikawa S et al (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306(5943):611–614CrossRefGoogle Scholar
  22. Hu Y et al (2016) Tumor-associated macrophages correlate with the clinicopathological features and poor outcomes via inducing epithelial to mesenchymal transition in oral squamous cell carcinoma. J Exp Clin Cancer Res 35:12CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jin G et al (2010) An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS ONE 5(6):e10993CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222:129–144CrossRefGoogle Scholar
  25. Klement JD et al (2018) An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J Clin Invest 128(12):5549–5560CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kruger DM et al (2017) Structure-based design of non-natural macrocyclic peptides that inhibit protein-protein interactions. J Med Chem 60(21):8982–8988CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kumai T et al (2017) Optimization of peptide vaccines to induce robust antitumor CD4 T-cell responses. Cancer Immunol Res 5(1):72–83CrossRefGoogle Scholar
  28. Lam KS et al (2003) Synthesis and screening of “one-bead one-compound” combinatorial peptide libraries. Methods Enzymol 369:298–322CrossRefGoogle Scholar
  29. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707CrossRefGoogle Scholar
  30. Lei J et al (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11(7):3919–3931PubMedPubMedCentralGoogle Scholar
  31. Li Q et al (2016) Discovery of peptide inhibitors targeting human programmed death 1 (PD-1) receptor. Oncotarget 7(40):64967–64976PubMedPubMedCentralGoogle Scholar
  32. Li C et al (2018) Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. Cancer Immunol Res 6(2):178–188CrossRefGoogle Scholar
  33. Lin DY et al (2008) The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc Natl Acad Sci USA 105(8):3011–3016CrossRefGoogle Scholar
  34. Liu DW (2008) Opioid peptides and innate immune response in mollusc. Protein Pept Lett 15(7):683–686CrossRefGoogle Scholar
  35. Liu W et al (2019) A genetically encoded, phage-displayed cyclic peptide library. Angew Chem Int Ed EnglGoogle Scholar
  36. Liu R, Lam KS (2001) Automatic Edman microsequencing of peptides containing multiple unnatural amino acids. Anal Biochem 295(1):9–16CrossRefGoogle Scholar
  37. Liu Y et al (2004) Peptide-mediated inhibition of neutrophil transmigration by blocking CD47 interactions with signal regulatory protein alpha. J Immunol 172(4):2578–2585CrossRefGoogle Scholar
  38. Liu R et al (2017) Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 110–111:13–37CrossRefGoogle Scholar
  39. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153CrossRefGoogle Scholar
  40. Magiera-Mularz K et al (2017) Bioactive macrocyclic inhibitors of the PD-1/PD-L1 immune checkpoint. Angew Chem Int Ed Engl 56(44):13732–13735CrossRefPubMedPubMedCentralGoogle Scholar
  41. Martinez-Torres AC et al (2015) CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCgamma1 activation: evidence from mice and humans. PLoS Med 12(3):e1001796CrossRefPubMedPubMedCentralGoogle Scholar
  42. Matlung HL et al (2017) The CD47-SIRPalpha signaling axis as an innate immune checkpoint in cancer. Immunol Rev 276(1):145–164CrossRefGoogle Scholar
  43. Melssen M, Slingluff CL Jr (2017) Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 47:85–92CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mikawa M et al (2004) Novel peptide ligands for integrin alpha 4 beta 1 overexpressed in cancer cells. Mol Cancer Ther 3(10):1329–1334PubMedGoogle Scholar
  45. Noda M et al (1982) Isolation and structural organization of the human preproenkephalin gene. Nature 297(5865):431–434CrossRefGoogle Scholar
  46. O’Day SJ, Hamid O, Urba WJ (2007) Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110(12):2614–2627CrossRefGoogle Scholar
  47. Ostrov DA et al (2000) Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 290(5492):816–819CrossRefGoogle Scholar
  48. Pang L et al (2019) Surface modification of polymeric nanoparticles with M2pep peptide for drug delivery to tumor-associated macrophages. Pharm Res 36(4):65CrossRefPubMedPubMedCentralGoogle Scholar
  49. Park H et al (2018) Protein homology model refinement by large-scale energy optimization. Proc Natl Acad Sci USA 115(12):3054–3059CrossRefGoogle Scholar
  50. Paulick MG et al (2006) Cleavable hydrophilic linker for one-bead-one-compound sequencing of oligomer libraries by tandem mass spectrometry. J Comb Chem 8(3):417–426CrossRefGoogle Scholar
  51. Pelay-Gimeno M et al (2015) Structure-based design of inhibitors of protein-protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed Engl 54(31):8896–8927CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pencheva T et al (2010) Post-docking virtual screening of diverse binding pockets: comparative study using DOCK, AMMOS, X-Score and FRED scoring functions. Eur J Med Chem 45(6):2622–2628CrossRefGoogle Scholar
  53. Pirtskhalava M et al (2016) DBAASP vol 2: an enhanced database of structure and antimicrobial/cytotoxic activity of natural and synthetic peptides. Nucl Acids Res 44(13):6503CrossRefGoogle Scholar
  54. Rowshanravan B, Halliday N, Sansom DM (2018) CTLA-4: a moving target in immunotherapy. Blood 131(1):58–67CrossRefGoogle Scholar
  55. Salmaninejad A et al (2019) PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol 234(10):16824–16837CrossRefGoogle Scholar
  56. Saw PE, Song EW (2019) Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein CellGoogle Scholar
  57. Schwartz JC et al (2001) Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 410(6828):604–608CrossRefGoogle Scholar
  58. Scodeller P et al (2017) Precision targeting of tumor macrophages with a CD206 binding peptide. Sci Rep 7(1):14655CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sewald NJ, Hans-Dieter (2009) Peptides: chemistry and biology, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  60. Shaabani S et al (2018) A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015–2018). Expert Opin Ther Pat 28(9):665–678CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shergold AL, Millar R, Nibbs RJB (2019) Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res 145:104258CrossRefGoogle Scholar
  62. Shin WH, Christoffer CW, Kihara D (2017) In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 131:22–32CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shindo Y et al (2017) Anti-PD-L1 peptide improves survival in sepsis. J Surg Res 208:33–39CrossRefGoogle Scholar
  64. Sinova R et al (2019) Opioid receptors and opioid peptides in the cardiomyogenesis of mouse embryonic stem cells. J Cell Physiol 234(8):13209–13219CrossRefGoogle Scholar
  65. Skubitz KM, Skubitz AP (2011) Two new synthetic peptides from the N-domain of CEACAM1 (CD66a) stimulate neutrophil adhesion to endothelial cells. Biopolymers 96(1):25–31CrossRefGoogle Scholar
  66. Srinivasan M et al (2005) CD80 binding polyproline helical peptide inhibits T cell activation. J Biol Chem 280(11):10149–10155CrossRefGoogle Scholar
  67. Sukhov RR et al (1995) Opioid precursor gene expression in the human hypothalamus. J Comp Neurol 353(4):604–622CrossRefGoogle Scholar
  68. Szymczak LC, Kuo HY, Mrksich M (2018) Peptide arrays: development and application. Anal Chem 90(1):266–282CrossRefGoogle Scholar
  69. Tang YSC et al (2019) Identification, characterization, and optimization of integrin alphavbeta(6)-targeting peptides from a One-Bead One-Compound (OBOC) library: towards the development of positron emission tomography (pet) imaging agents. Molecules 24(2)Google Scholar
  70. Tiainen S et al (2015) High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66(6):873–883CrossRefGoogle Scholar
  71. Tinoco R et al (2016) PSGL-1 is an immune checkpoint regulator that promotes T cell exhaustion. Immunity 44(5):1190–1203CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tinoco R et al (2017) PSGL-1: a new player in the immune checkpoint landscape. Trends Immunol 38(5):323–335CrossRefPubMedPubMedCentralGoogle Scholar
  73. van Montfoort N et al (2018) NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175(7):1744–1755 e15Google Scholar
  74. Wang D et al (2019) Artificial intelligence-based multi-objective optimization protocol for protein structure refinement. BioinformaticsGoogle Scholar
  75. Wang J et al (2019) Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell 176(1–2):334–347.e12Google Scholar
  76. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):11–26CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wang SH et al (2013) HotLig: a molecular surface-directed approach to scoring protein-ligand interactions. J Chem Inf Model 53(8):2181–2195CrossRefGoogle Scholar
  78. Wang Y et al (2016) Optimization of RGD-Containing cyclic peptides against alphavbeta3 integrin. Mol Cancer Ther 15(2):232–240CrossRefGoogle Scholar
  79. Wang H et al (2019) HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol 15(1):42–50CrossRefGoogle Scholar
  80. Yamazaki T et al (2016) The oncolytic peptide LTX-315 overcomes resistance of cancers to immunotherapy with CTLA4 checkpoint blockade. Cell Death Differ 23(6):1004–1015CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yarchoan M et al (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(4):209–222CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zak KM et al (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23(12):2341–2348CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang WJ et al (2018) Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res 222:93–101CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Pharmacy, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of EducationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations