Advertisement

On the Quantum Capacitance of Quantum Wire Field-Effect Transistors of Compound Semiconductors

  • A. H. Seikh
  • N. Alharthi
  • P. K. Bose
  • K. P. GhatakEmail author
Chapter
  • 47 Downloads

Abstract

This chapter explores the quantum capacitance (\( C_{\text{g}} \)) in quantum wire field-effect transistors (QWFETs) manufactured from completely different technologically vital nonstandard materials by using all types of anisotropies of band structures in addition to splitting of bands due to large fields of the crystals inside the framework of Kane’s matrix methodology that successively generates new 1D dimensional electron energy versus wave vector relation. We derive the \( C_{\text{g}} \)  under very low temperature so that the Fermi function tends to unity for QWFETs of \( {\text{Cd}}_{3} {\text{As}}_{2} ,{\text{CdGeAs}}_{2} ,{\text{InSb}},{\text{Hg}}_{1 - x} {\text{Cd}}_{x} {\text{Te}},{\text{InAs}},{\text{GaAs}},{\text{In}}_{1 - x} {\text{Ga}}_{x} {\text{As}}_{y} {\text{P}}_{1 - y} \) IV–VI, stressed materials,\( {\text{Te}},{\text{GaP,PtSb}}_{2} ,{\text{Bi}}_{2} {\text{Te}}_{3} ,{\text{Ge}},{\text{GaSb}} \) and II–V compounds using the appropriate band models. The \( C_{\text{g}} \) becomes the functions of the thickness of the quantum-confined transistors. The \( C_{\text{g}} \) varies with varying film thickness in various quantized steps and saw-tooth manners with different numerical values.

Keywords

Quantum capacitance Quantum wire field effect transistors Compound semiconductors Film thickness 

References

  1. 1.
    K.P. Ghatak, M. Mondal, J. Appl. Phys. 70, 299 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    K.P. Ghatak, S.N. Biswas, J. Vac. Sci. Technol. 7B, 104 (1989)CrossRefGoogle Scholar
  3. 3.
    B. Mitra, K.P. Ghatak, J. Solid-State Electron. 32, 177 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    M. Mondal, K.P. Ghatak, J. Magn. Magn. Mater. 62, 115 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    M. Mondal, K.P. Ghatak, J. Phys. Scr. 31, 613 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    K.P. Ghatak, M. Mondal, J. Zeitschrift für Physik B Condens Matter. 64, 223 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    K.P. Ghatak, S.N. Biswas, J. Solid-State Electron. 37, 1437 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    K.P. Ghatak, N. Chattopadhyay, M. Mondal, J. Appl. Phys. A 48, 365 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    K.P. Ghatak, M. Mondal, Z. fur Physik B 64, 223 (1986)CrossRefGoogle Scholar
  11. 11.
    K.P. Ghatak, S.N. Biswas, Sol. State Electron. 37, 1437 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    D.R. Choudhury, A.K. Chowdhury, K.P. Ghatak, A.N. Chakravarti, Phys. Stat. Sol. (b) 98, K141 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    A.N. Chakravarti, A.K. Chowdhury, K.P. Ghatak, Phys. Stat. Sol. (a) 63, K97 (1981)ADSCrossRefGoogle Scholar
  14. 14.
    M. Mondal, K.P. Ghatak, Acta Phys. Polon. A 67, 983 (1985); M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 128, K21 (1985)Google Scholar
  15. 15.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (a) 93, 377 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 135, 819 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    M. Mondal, K.P. Ghatak, Phys. Stat. Sol. (b) 139, 185 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    K.P. Ghatak, N. Chattopadhyay, S.N. Biswas, OE/Fibers’ 87, 203 (1987)Google Scholar
  19. 19.
    K.P. Ghatak, N. Chatterjee, M. Mondal, Phys. Stat. Sol. (b) 139, K25 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    K.P. Ghatak, M. Mondal, Phys. Stat. Sol. (b) 148, 645 (1988); K.P. Ghatak, A. Ghosal, Phys. Stat. Sol. (b) 151, K135 (1989); K P. Ghatak, N. Chattopadhyay, M. Mondal, Phys. A 48, 365 (1989)Google Scholar
  21. 21.
    P.K. Das, K.P. Ghatak, J. Nanosci. Nanotechnol. 19, 2909 (2019); K.P. Ghatak, S. Chakrabarti, B. Chatterjee, Mater. Focus 7, 361 (2018); K.P. Ghatak, S. Chakrabarti, B. Chatterjee, P.K. Das, P. Dutta, A. Halder, Mater. Focus 7, 390 (2018); B. Chatterjee, N. Debbarma, M. Mitra, T. Datta, K.P. Ghatak, J. Nanosci. Nanotechnol. 17, 3352 (2017)Google Scholar
  22. 22.
    K.P. Ghatak, D. De, Mater. Focus 6, 114 (2017); P.K. Das, P. Dutta, A. Halder, J. Pal, N. Debbarma, S. Debbarma, K.P. Ghatak, Mater. Focus 6, 167 (2017); P.K. Das, P. Dutta, A. Halder, R. Bhattacharjee, K.P. Ghatak, Mater. Focus 6, 133 (2017); R. Bhattacharjee, K.P. Ghatak, J. Nanosci. Nanotechnol. 17, 640 (2017)Google Scholar
  23. 23.
    M. Mitra, T.N. Sen, T. Datta, R. Bhattacharjee, L.S. Singh, K.P. Ghatak, J. Nanosci. Nanotechnol. 17, 256 (2017); T.N. Sen, K.P. Ghatak, Quantum Matter 5, 732 (2016); T.N. Sen, K.P. Ghatak, Quantum Matter 5, 721 (2016); K.P. Ghatak, K. Sarkar, S. Chakrabarti, M. Kumar, M. Debbarma, T.N. Sen, M. Chakraborty, Rev. Theor. Sci. 4, 199 (2016)Google Scholar
  24. 24.
    R. Bhattacharya, K. Sarkar, M. Kumar, B. Chatterjee, K.P. Ghatak, Quantum Matter 5, 557 (2016); K.P. Ghatak, K. Sarkar, N. Debbarma, L. Suraj Singh, Quantum Matter 5, 427 (2016); K.P. Ghatak, D. De, J. Nanoeng. Nanomanuf. 6, 1 (2016); S.K. Biswas, M. Mitra, K.P. Ghatak, J. Nanoeng. Nanomanuf. 6, 63 (2016)Google Scholar
  25. 25.
    N. Paitya, K.P. Ghatak, Quantum Matter 5, 191 (2016); B. Chatterjee, S. Chakrabarti, S.K. Sen, M. Mitra, K.P. Ghatak, Quantum Matter 5, 85 (2016); K.P. Ghatak, in Magneto Thermoelectric Power in Heavily Doped Quantized Structures (Series on the Foundations of Natural Science and Technology, World Scientific Publishing Company, 2016), vol. 7, pp. 758; K.P. Ghatak, in Dispersion Relations in Heavily-Doped Nanostructures (Springer International Publishing, 2016), p. 615Google Scholar
  26. 26.
    B. Chatterjee, K. Sarkar, K.P. Ghatak, in Advances in Optical Science and Engineering (Springer India, 2015), p. 621; K.P. Ghatak, in Einstein’s Photoemission (Springer International Publishing, 2015), p. 295Google Scholar
  27. 27.
    S.M. Adhikari, K.P. Ghatak, J. Adv. Phys. 2, 130 (2013); S. Bhattacharya, D. De, S. Ghosh, K.P. Ghatak, J. Comput. Theor. Nanosci. 10, 664 (2013); N. Paitya, S. Bhattacharya, D. De, S. Ghosh, K.P. Ghatak, J. Nanoeng. Nanomanuf. 2, 211 (2012)Google Scholar
  28. 28.
    S. Pahari, S. Bhattacharya, K.P. Ghatak, J. Comput. Theor. Nanosci. 6, 2088 (2009); L.J. Singh, S. Choudhury, S. Singha Roy, K.P. Ghatak, Electr. Eng. 87, 19 (2005); P.K. Chakraborty, G.C. Datta, K.P. Ghatak, Phys. Scr. 68, 368 (2003)Google Scholar
  29. 29.
    K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 1292 (2002); K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 1296 (2002); K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, Proceedings-SPIE Int. Soc. Opt. Eng. 2, 1296 (2002); K.P. Ghatak, J. Mukhopadhyay, J.P. Banerjee, SPIE Proc. Ser. 4746, 347 (2002)Google Scholar
  30. 30.
    K.P. Ghatak, P.K. Bose, J.P. Banerjee, SPIE Proc. Ser. 4746, 351 (2002); K.P. Ghatak, SPIE Proc. Ser. 4746, 292 (2002); K.P. Ghatak, J. Wave Mater. Interact. 14, 157 (1999); K.P. Ghatak, P.K. Bose, J. Wave Mater. Interact. 12, 53 (1997); K.P. Ghatak, B. Nag, J. Wave Mater. Interact. 12, 85 (1997); B. Mitra, D.K. Basu, B. Nag, K.P. Ghatak, Nonlinear Optics-Read. 17, 171 (1997); K.P. Ghatak, P.K. Bose, J. Wave Mater. Interact. 12, 60 (1997); P.K. Bose, KP Ghatak, J. Wave Mater. Interact. 12, 67 (1997)Google Scholar
  31. 31.
    K.P. Ghatak, P.K. Bose, G. Majumder, MRS Proc. 494, 157 (1997); K.P. Ghatak, D.K. Basu, D. Basu, B. Nag, Il Nuovo Cimento D 18, 947 (1996); K.P. Ghatak, S. Dutta, A. Ali, S. Banerjee, B. Nag, J. Wave Mater. Interact. 11, 127 (1996); P.K. Chakrabarty, B. Nag, S. Dutta, K.P. Ghatak, J. Wave Mater. Interact. 11, 55 (1996)Google Scholar
  32. 32.
    B. Nag, P.K. Chakrabarty, K.P. Ghatak, J. Wave Mater. Interact. 11, 211 (1996); K.P. Ghatak, P.K. Chakrabarty, B. Nag, J. Wave Mater. Interact. 11, 159 (1996); K.P. Ghatak, S.N. Banik, FIZIKA A-ZAGREB 5, 31 (1996)Google Scholar
  33. 33.
    K.P. Ghatak, J.P. Banerjee, P.K. Chakrabarty, B. Nag, J. Wave Mater. Interact. 11, 166 (1996); P.K. Chakraborty, B. Nag, S. Dutta, K.P. Ghatak, J. Wave Mater. Interact. 11, 111 (1996)Google Scholar
  34. 34.
    K.P Ghatak, S. Bera, A. Ali, B. Nag, FIZIKA A-ZAGREB 5, 111 (1996); K.P. Ghatak, J.P. Banerjee, B. Goswami, B. Nag, Nonlinear Optics-Read. 16, 241 (1996); K.P. Ghatak, M. Mitra, B. Goswami, B. Nag, Nonlinear Optics-Read. 16, 167 (1996); K.P. Ghatak, D. Bhattacharya, D. Basu, B. Nag, Phys. Status Sol. (b) 191, 141 (1995)Google Scholar
  35. 35.
    K.P. Ghatak, B. Nag, M. Mitra, J.P. Bannerjee, J. Wave Mater. Interact. 10, 11 (1995); K.P. Ghatak, D.K. Basu, B. Nag, J. Wave Mater. Interact. 10, 29 (1995); K.P. Ghatak, S. Dutta, D. Basu, B. Nag, J. Wave Mater. Interact. 10, 1 (1995)Google Scholar
  36. 36.
    K.P Ghatak, B. Nag, G. Mazumder, MRS Proc. 379, 85 (1995); K.P. Ghatak, B. Nag, G. Mazumder, MRS Proc. 379, 109 (1995); K.P. Ghatak, S. N Banik, FIZIKA A 3, 155 (1994); S.N. Banik, K.P. Ghatak, S.N. Biswas, FIZIKA A 3, 77 (1994); K.P. Ghatak, Fizika A 2, 133 (1993); K.P. Ghatak, S.N. Biswas, MRS Proc. 313, 375 (1993); K.P. Ghatak, S.N. Biswas, MRS Proc. 308, 445 (1993)Google Scholar
  37. 37.
    K.P. Ghatak, D. Bhattacharyya, J. Wave Mater. Interact. 8, 233 (1993); K.P. Ghatak, S.N. Biswas, Acta Phys. Slovaca 43, 425 (1993); K.P. Ghatak, S.N. Biswas, Nanostruct. Mater. 2, 91 (1993)Google Scholar
  38. 38.
    K.P. Ghatak, M. Mondal, Fizika A 1, 113 (1992); K.P. Ghatak, B. De, MRS Proc. 262, 911 (1992); K.P. Ghatak, B. De, MRS Proc. 242, 373 (1992); K.P. Ghatak, B. De, MRS Online Proc. Libr. Archive 228, (1992); K.P. Ghatak, Fizika A 1, 197 (2006)Google Scholar
  39. 39.
    K.P. Ghatak, S. Bhattacharyya, S.N. Biswas, Acta Phys. Hung. 70, 83 (1991); K.P. Ghatak, Acta Phys. Hung. 69, 121 (1991); K.P. Ghatak, B. De, MRS Proc. 234, 59 (1991); K.P. Ghatak, B. De, MRS Proc. 234, 55 (1991); K.P. Ghatak, Acta Phys. Hung. 68, 253 (1990); K.P. Ghatak, Acta Phys. Hung. 67, 407 (1990); K.P. Ghatak, MRS Proc. 216, 469 (1990); K.P. Ghatak, MRS Proc. 216, 465 (1990)Google Scholar
  40. 40.
    K.P. Ghatak, B. De, M. Mondal, S.N. Biswas, MRS Proc. 184, 261 (1990); K.P. Ghatak, B. De, M. Mondal, S.N. Biswas, MRS Proc. 198, 333 (1990); B. Mitra, K.P. Ghatak, Solid-State Electron. 32, 810 (1989); K.P. Ghatak, M. Mondal, J. Appl. Phys. 62, 922 (1987); S.N. Biswas, K.P. Ghatak, Megagauss Technol. Pulsed Power Appl. 8, 219 (1987); M. Mondal, K.P. Ghatak, Czechoslovak J. Phys. 36, 1396 (1986); A. Arti, K.P. Ghatak, K.K. Ghosh, S. Ghosh, A. Dhar, Physica Status Solidi B-Basic Res. 103, K55(1981)Google Scholar
  41. 41.
    S. Bhattacharya, K.P. Ghatak, Fowler-Nordheim Field Emission, Springer Series in Solid-State Sciences, vol. 170 (Springer-Verlag, Germany, 2012), pp. 1–338Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • A. H. Seikh
    • 1
  • N. Alharthi
    • 2
  • P. K. Bose
    • 3
  • K. P. Ghatak
    • 4
    Email author
  1. 1.Centre of Excellence for Research in Engineering Materials, Deanship of Scientific ResearchKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Mechanical EngineeringCollege of Engineering, King Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Mechanical EngineeringSwami Vivekananda Institute of Science and TechnologyKolkataIndia
  4. 4.Department of Basic Science Institute of Engineering and ManagementKolkataIndia

Personalised recommendations