Advertisement

Analysis of InN-Based Surrounded Gate Tunnel Field-Effect Transistor for Terahertz Applications

  • Ritam Dutta
  • Nitai PaityaEmail author
Chapter
  • 37 Downloads

Abstract

The analysis of a proposed surrounded gate pocket intrinsic tunnel field-effect transistor (SG-PI-TFET) has been reported based on indium nitride (InN). The device structure has been simulated and analyzed using TCAD device simulator taking non-local band-to-band tunneling (BTBT) into consideration. We have accounted the fundamental limits of InN tunnel FET devices arising from the basic material properties by numerical simulation and analytical calculations. The tunneling current is evaluated and the effects are analyzed with a change in different device parameters to create the TFET design rule. The cut-off frequency (ft) of the device is found to be 0.45 THz which makes it appropriate for high-frequency applications.

Keywords

Tunnel field-effect transistor (TFET) SG-PI-TFET Band-to-band tunneling (BTBT) InN TCAD device simulator 

References

  1. 1.
    T. Nirschl, S. Henzler, J. Fischer et al., Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid State Electron. 50(1), 44–51 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    W.Y. Choi, B.G. Park, J.D. Lee, Tunneling field effect transistor (TFET) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A.S. Verhulst, D. Leonelli, R. Rooyackers, G. Groeseneke, Drain voltage dependent analytical model of tunnel field-effect transistors. J. Appl. Phys. 110(2), 024510 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Brocard, M. Pala, D. Esseni, Design options for heterojunction tunnel FETs with high on current and steep sub-VT slope, in Proceedings of IEEE International Electron Devices Meeting (IEDM), (San Francisco, CA, USA, 2012), pp. 1, 4, 5Google Scholar
  6. 6.
    W. Lee, W.Y. Choi, Influence of inversion layer on tunneling field-effect transistors. IEEE Electron Device Lett. 32(9), 1191–1193 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    K.T. Tsen, C. Poweleit, D.K. Ferry, H. Lu, W.J. Schaff, Observation of large electron drift velocities in InN by ultrafast Raman spectroscopy. Appl. Phys. Lett. 86(22), 222103 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Potential performance of indium-nitride-based devices. Appl. Phys. Lett. 88(15), 152113 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C. Shen, S.-L. Ong, C.-H. Heng, G. Samudra, Y.-C. Yeo, A variational approach to the two-dimensional nonlinear poisson’s equation for the modeling of tunneling transistors. IEEE Electron Device Lett. 29, 1252–1255 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    P. Wisniewski, B. Majkusiak, Modeling the tunnel field-effect transistor based on different tunneling path approaches. IEEE Trans. Electron Devices 65(6), 2626–2631 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    E.O. Kane, Theory of tunneling. J. Appl. Phys. 32(1), 83–91 (1961)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M.G. Bardon, H.P. Neves, R. Puers, C. Van Hoof, Pseudo two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57(4), 827–834 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    E.O. Kane, Zener tunneling in semiconductors. J. Appl. Phys. Chem. Solids 12(2), 181–188 (1960)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Khatami, K. Banerjee, Steep subthreshold slope n and p-type tunnel-FET devices for low-power and energy efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Cho, J.S. Lee, K.R. Kim, B.G. Park, J.S. Harris, I.M. Kang, Analyses on small—signal parameters and radio-frequency modeling of gate-all-around tunneling field effect transistors. IEEE Trans. Electron Devices 58(12), 4164–4171 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J. Madan, R. Chaujar, Numerical simulation of N+ source pocket PIN-GAA-tunnel FET: impact of interface trap charges and temperature. IEEE Trans. Electron Devices 64(4), 1482–1488 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSikkim Manipal Institute of Technology, Sikkim Manipal UniversityGangtokIndia

Personalised recommendations