Advertisement

Potentiality of Impact Avalanche Transit Time Diode as Terahertz Source Based on Group IV and III–V Semiconducting Materials

  • Girish Chandra GhivelaEmail author
  • S. J. Mukhopadhyay
  • Joydeep Sengupta
  • M. Mitra
Chapter
  • 35 Downloads

Abstract

Through the numerical approach, we have determined the response time in avalanche and drift regions of the double drift region (DDR) impact ionization avalanche transit time (IMPATT) diode based on group IV materials like silicon (Si), germanium (Ge) and group III–V materials like wurtzite gallium nitride (WzGaN), gallium arsenide (GaAs) and indium phosphide (InP) at the window frequency of 0.094–30 THz. The study of response time reveals that it has impact on the limitation on high frequency power generated by the IMPATT as terahertz source. A comparison is being made for all the materials so that diode can be designed with suitable material as per the requirement for THz applications. Also DC-to-radio frequency (RF) conversion efficiency for InP, GaAs, Si, Ge and WzGaN is computed through the numerical technique. The efficiency obtained for all the materials are compared at the corresponding THz frequency.

Keywords

Impact ionization Avalanche Drift Response time THz Semiconductors 

References

  1. 1.
    T.A. Midford, R.L. Bernick, Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27(5), 483–492 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    D. Ke-Lin, M.N.S. Swamy, Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies (Cambridge University Press, Cambridge, 2010), pp. 416–417Google Scholar
  3. 3.
    J.H. Chris, S.R. Balmer, Diamond as an electronic material. Mater. Today 11, 22–28 (2008)Google Scholar
  4. 4.
    W.T. Read, A proposed high-frequency negative-resistance diode. Bell Syst. Tech. J. 37(2), 401–446 (1958)CrossRefGoogle Scholar
  5. 5.
    R.L. Johnston, B.C. De Loach Jr., B.G. Cohen, A silicon diode microwave oscillator. Bell Syst. Tech. J. 44(2), 369–372 (1965)Google Scholar
  6. 6.
    C.A. Lee, R.L. Batdorf, W. Wiegmann, G. Kaminski, The read diode-an avalanching, transit-time, negative resistance oscillator. Appl. Phys. Lett. 6(5), 89–91 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey, 2007), pp. 466–488Google Scholar
  8. 8.
    W. Shockley, Negative resistance arising from transit time in semiconductor diode. Bell Syst. Tech. J. 33(4), 799–826 (1954)CrossRefGoogle Scholar
  9. 9.
    B.C. DeLoach Jr., The IMPATT story. IEEE Trans. Electron. Dev. 23(7), 657–660 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    T. Misawa, Negative resistance in p-n junction under avalanche breakdown conditions, part I. IEEE Trans. Electron. Dev. 13(1), 137–143 (1966)ADSCrossRefGoogle Scholar
  11. 11.
    T. Misawa, Negative resistance in p-n junction under avalanche breakdown conditions, part II. IEEE Trans. Electron. Dev. 13(1), 143–151 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    M. Gilden, M.E. Hines, Electronic tuning effects in the read microwave avalanche diode. IEEE Trans. Electron. Dev. 13(1), 169–175 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    Electronic archive: New semiconductor materials, characteristics and properties. http://www.ioffe.ru/SVA/NSM/Semicond
  14. 14.
    D.N. Datta, S.P. Pati, J.P. Banerjee, B.B. Pal, S.K. Roy, Computer analysis of DC field and current density profiles of DAR impatt diode. IEEE Trans. Electron. Devices 29(11), 1813–1816 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Roy, M. Sridharan, R. Ghosh, B.B. Pal, Computer method for the DC field and carrier current profiles in the field extremum in the depletion layer (NASECODEI Proc, Dublin (Ireland), 1982), pp. 266–274Google Scholar
  16. 16.
    G.C. Ghivela, J. Sengupta, Prospects of impact avalanche transit-time diode based on chemical-vapor-deposited diamond substrate. J. Electron. Mater. 48(2), 1044–1053 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    G.C. Ghivela, J. Sengupta, M. Mitra, Space charge effect of IMPATT diode using Si, Ge, GaAs, InP, WzGaN, 4H-SiC at Ka band. IETE J. Edu. 58(2), 61–66 (2017)CrossRefGoogle Scholar
  18. 18.
    G.C. Ghivela, J. Sengupta, Estimation of power density in IMPATT using different materials. Inter. J. Electron.  https://doi.org/10.1080/00207217.2019.1672810
  19. 19.
    J. Sengupta, G.C. Ghivela, A. Gajbhiye, M. Mitra, Measurement of noise and efficiency of 4H-SiC Impatt diode at Ka band. Int. J. Electron. Lett. 4(2), 134–140 (2016)CrossRefGoogle Scholar
  20. 20.
    G.C. Ghivela, J. Sengupta, M. Mitra, Ka band noise comparison for Si, Ge, GaAs, InP, WzGaN, 4H-SiC based IMPATT diode. Int. J. Electron. Lett. 7(1), 107–116 (2019)CrossRefGoogle Scholar
  21. 21.
    G.C. Ghivela, J. Sengupta, Noise performance of avalanche transit–time devices in the presence of acoustic phonons. J. Comput. Electron. 18(1), 222–230 (2019)CrossRefGoogle Scholar
  22. 22.
    G.C. Ghivela, J. Sengupta, Modeling and computation of double drift region transit time diode performance based on graphene-SiC. Int. J. Numer. Model 32(5), 01–11 (2019)Google Scholar
  23. 23.
    G.C. Ghivela, J. Sengupta, Effect of acoustic phonon scattering on impact ionization rate of electrons in monolayer graphene nanoribbons. Appl. Phys. A 124(762), 01–08 (2018)Google Scholar
  24. 24.
    G.C. Ghivela, J. Sengupta, M. Mitra, Quantum corrected drift diffusion based noise model for impact avalanche and transit time diode. Superlattices Microstruct. 128, 402–407 (2019)ADSCrossRefGoogle Scholar
  25. 25.
    P. Banerjee, A. Acharyya, A. Biswas, A.K. Bhattacharjee, Effect of magnetic field on the RF performance of millimeter-wave IMPATT source. J. Comput. Electron. 15(1), 210–221 (2016)CrossRefGoogle Scholar
  26. 26.
    P.K. Bandyopadhyay, S. Chakraborty, A. Biswas, A. Acharyya, A.K. Bhattacharjee, Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier-carrier interactions. J. Comput. Electron. 15(2), 646–656 (2016)CrossRefGoogle Scholar
  27. 27.
    P.K. Bandyopadhyay, A. Biswas, A.K. Bhattacharjee, A. Acharyya, Influence of carrier–carrier interactions on the noise performance of millimeter-wave IMPATTs. IETE J. Res. (2018).  https://doi.org/10.1080/03772063.2018.1433078
  28. 28.
    A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, H. Inokawa, 1.0 THz GaN IMPATT source: Effect of parasitic series resistance. J. Infrared Millim. Terahertz Waves 39(10), 954–974 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Girish Chandra Ghivela
    • 1
    Email author
  • S. J. Mukhopadhyay
    • 2
  • Joydeep Sengupta
    • 1
  • M. Mitra
    • 2
  1. 1.ECE DepartmentVNITNagpurIndia
  2. 2.E&TC DepartmentIIESTShibpur, HowrahIndia

Personalised recommendations