Advertisement

Terahertz Radiators Based on Silicon Carbide Avalanche Transit Time Sources—Part I: Large-Signal Characteristics

  • S. J. Mukhopadhyay
  • P. Mukherjee
  • A. AcharyyaEmail author
  • M. Mitra
Chapter
  • 39 Downloads

Abstract

The static and high-frequency simulations have been performed to explore the potency of avalanche transit time (ATT) oscillators based upon wide bandgap (WBG) semiconducting substances like 3C-SiC and type-IIb diamond (C) as millimeter-wave (mm-wave) and terahertz (THz) wave generators; characteristics of those sources have been compared with the DDR IMPATTs on the basis of traditional substance, i.e., Si. A non-sinusoidal voltage excited (NSVE) large-signal simulation procedure has been employed here to scrutinize the static and large-signal features of the sources. The simulation studies show that the DDR 3C-SiC IMPATTs possess better RF power delivery capability from 140 GHz to 1.0 THz as compared to the diamond IMPATTs, whereas the diamond IMPATT source is a better option for RF power generation at 94 GHz due to its better power generation capability at lower mm-wave frequencies. However, IMPATT sources based on both 3C-SiC and diamond are much powerful in comparison with mm-wave and THz IMPATT sources based on Si.

Keywords

3C-SiC Diamond IMPATT Millimeter-wave Si Terahertz 

Notes

Acknowledgements

The authors deeply feel and acknowledge the help and spontaneous support rendered by the authority of IIEST, Shibpur, West Bengal, by making a suitable arrangement to perform the research work smoothly.

References

  1. 1.
    T.A. Midford, R.L. Bernick, Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27, 483–492 (1979)CrossRefADSGoogle Scholar
  2. 2.
    R.E. Goldwasser, F.E. Rosztoczy, High efficiency GaAs low-hig-low IMPATTs. Appl. Phys. Lett. 25, 92 (1974)CrossRefADSGoogle Scholar
  3. 3.
    W.W. Gray, L. Kikushima, N.P. Morentc, R.J. Wagner, Applying IMPATT power sources to modern microwave systems. IEEE J. Solid-State Circ. 4, 409–413 (1969)CrossRefADSGoogle Scholar
  4. 4.
    Y. Chang, J.M. Hellum, J.A. Paul, K.P. Weller, Millimeter-wave IMPATT sources for communication applications. in IEEE MTT-S International Microwave Symposium Digest (1977), pp. 216–219Google Scholar
  5. 5.
    H. Eisele, Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid State Electron. 32(3), 253–257 (1989)CrossRefADSGoogle Scholar
  6. 6.
    H. Eisele, GaAs W-band IMPATT diode for very low noise oscillations. Electron. Lett. 26(2), 109–110 (1990)CrossRefADSGoogle Scholar
  7. 7.
    W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007)CrossRefADSGoogle Scholar
  8. 8.
    D. Grischkowsky, S. Keiding, M. Exter, C. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990)CrossRefADSGoogle Scholar
  9. 9.
    C. Debus, P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91, 184102 (2007)CrossRefADSGoogle Scholar
  10. 10.
    T. Yasui, T. Yasuda, K. Sawanaka, T. Araki, Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film. Appl. Opt. 44, 6849–6856 (2005)CrossRefADSGoogle Scholar
  11. 11.
    C.D. Stoik, M.J. Bohn, J.L. Blackshire, Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Expr. 16, 17039–17051 (2008)CrossRefADSGoogle Scholar
  12. 12.
    A.J. Fitzgerald, B.E. Cole, P.F. Taday, Nondestructive analysis of tablet coating thicknesses using terahertz pulsed imaging. J. Pharm. Sci. 94, 177–183 (2005)CrossRefGoogle Scholar
  13. 13.
    P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004)CrossRefADSGoogle Scholar
  14. 14.
    P.H. Siegel, THz instruments for space. IEEE Trans. Antenn. Propag. 55, 2957–2965 (2007)CrossRefADSGoogle Scholar
  15. 15.
    C. Dalle, P. Rolland, G. Lieti, Flat doping profile double-drift silicon IMPATT for reliable CW high power high-efficiency generation in the 94-GHz window. IEEE Trans. Electr. Dev. 37, 227–236 (1990)CrossRefADSGoogle Scholar
  16. 16.
    J.F. Luy, A. Casel, W. Behr, E. Kasper, A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans. Electr. Dev. 34, 1084–1089 (1987)CrossRefADSGoogle Scholar
  17. 17.
    M. Wollitzer, J. Buchler, F. Schafflr, J.F. Luy, D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron. Lett. 32, 122–123 (1996)CrossRefGoogle Scholar
  18. 18.
    D. Ghoshal, Measurement of electrical resistance of silicon single drift region IMPATT diode based on the study of the device and mounting circuit at threshold condition. J. Electron Dev. 11, 625–631 (2011)Google Scholar
  19. 19.
    M. Mukherjee, S. Banerjee, J.P. Banerjee, Dynamic characteristics of III–V and IV–IV semiconductor based transit time devices in the terahertz regime: a comparative analysis. Terahertz Sci. Tech. 3, 98–109 (2010)Google Scholar
  20. 20.
    M. Mukherjee, N. Mazumder, S.K. Roy, Prospects of 4H-SiC double drift region IMPATT device as a photo-sensitive high-power source at 0.7 terahertz frequency regime. Act. Passive Electron. Compon. 2009, 1–9 (2009)Google Scholar
  21. 21.
    K.V. Vassilevski, K. Zekentes, A.V. Zorenko, L.P. Romanov, Experimental determination of electron drift velocity in 4H-SiC p+-n-n+ avalanche diodes. IEEE Electron Dev. Lett. 21, 485–487 (2000)CrossRefADSGoogle Scholar
  22. 22.
    A. Acharyya, J.P. Banerjee, Potentiality of IMPATT devices as terahertz source: an avalanche response time based approach to determine the upper cut-off frequency limits. IETE J. Res. 59(2), 118–127 (2013)CrossRefGoogle Scholar
  23. 23.
    R.J. Trew, J.B. Yan, P.M. Mock, The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79(5), 598–620 (1991)CrossRefADSGoogle Scholar
  24. 24.
    P.M. Mock, R.J. Trew, RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. in Proceedings of IEEE/Cornell Conference Advanced Concepts in High-Speed Semiconductor Devices and Circuits (1989), pp. 383–389Google Scholar
  25. 25.
    W.N. Grant, Electron and hole ionization rates in epitaxial silicon. Solid State Electron. 16, 1189–1203 (1973)CrossRefADSGoogle Scholar
  26. 26.
    R. Mickevicius, J.H. Zhao, Monte carlo study of electron transport in SiC. J. Appl. Phys. 83, 3161–3167 (1998)CrossRefADSGoogle Scholar
  27. 27.
    E.A. Konorova, Y.A. Kuznetsov, V.F. Sergienko, S.D. Tkachenko, A.K. Tsikunov, A.V. Spitsyn, Y.Z. Danyushevski, Impact ionization in semiconductor structures made of ion-implanted diamond. Sov. Phys. Semicond 17, 146 (1983)Google Scholar
  28. 28.
    C. Canali, G. Ottaviani, A.A. Quaranta, Drift velocity of electrons and holes and associated anisotropic effects in silicon. J. Phys. Chem. Solids 32, 1707–1720 (1971)CrossRefADSGoogle Scholar
  29. 29.
    D.K. Ferry, High-field transport in wide-bandgap semiconductors. Phys. Rev. B 12, 2361 (1975)CrossRefADSGoogle Scholar
  30. 30.
    C. Canali, E. Gatti, S.F. Kozlov, P.F. Manfredi, C. Manfredotti, F. Nava, A. Quirini, Electrical properties and performances of neutral diamond nuclear radiation detectors. Nuclear Instrum. Methods 160, 73 (1979)CrossRefADSGoogle Scholar
  31. 31.
    C. Canali, E. Gatti, S.F. Kozlov, P.F. Manfredi, C. Manfredotti, F. Nava, A. Quirini, Electronic archive: new semiconductor materials, characteristics and properties. Available from http://www.ioffe.ru/SVA/NSM/Semicond/index.html. Last accessed on Sept 2019
  32. 32.
    S.M. Sze, R.M. Ryder, Microwave avalanche diodes. Proc. IEEE. Special Issue Microw. Semiconductor Dev. 59, 1140–1154 (1971)Google Scholar
  33. 33.
    A. Acharyya, J. Chakraborty, K. Das, S. Datta, P. De, S. Banerjee, J.P. Banerjee, Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. Int. J. Microw. Wirel. Technol. 5(5), 567–578 (2013)CrossRefGoogle Scholar
  34. 34.
    H.K. Gummel, J.L. Blue, A small-signal theory of avalanche noise in IMPATT diodes. IEEE Trans. Electron Dev. 14, 569–580 (1967)CrossRefADSGoogle Scholar
  35. 35.
    S.K. Roy, M. Sridharan, R. Ghosh, B.B. Pal, Computer method for the dc field and carrier current profiles in the IMPATT device starting from the field extremum in the depletion layer. in Proceedings of the 1st Conference on Numerical Analysis of Semiconductor Devices (NASECODE I), ed. by J.H. Miller (Dublin, Ireland, 1979), pp. 266–274Google Scholar
  36. 36.
    S.K. Roy, J.P. Banerjee, S.P. Pati, A computer analysis of the distribution of high frequency negative resistance in the depletion layer of IMPATT Diodes. in Proceedings of 4th Conference on Numerical Analysis of Semiconductor Devices (NASECODE IV) (Dublin, Ireland, 1985), pp. 494–500Google Scholar
  37. 37.
    J.P. Banerjee, J.F. Luy, F. Schaffler, Comparison of theoretical and experimental 60 GHz silicon IMPATT diode performance. Electron. Lett. 27, 1049–1050 (1991)CrossRefADSGoogle Scholar
  38. 38.
    A. Acharyya, M. Mukherjee, J.P. Banerjee, Effects of tunnelling current on mm-wave IMPATT Devices. Int. J. Electron. 102(9), 1429–1456 (2015)CrossRefGoogle Scholar
  39. 39.
    W.J. Evans, G.I. Haddad, A large-signal analysis of IMPATT diodes. IEEE Trans. Electron Dev. 15(10), 708–717 (1968)CrossRefADSGoogle Scholar
  40. 40.
    D.L. Scharfetter, H.K. Gummel, Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Dev. 6(1), 64–77 (1969)CrossRefADSGoogle Scholar
  41. 41.
    M.S. Gupta, R.J. Lomax, A current-excited large-signal analysis of IMPATT devices and its circuit implementations. IEEE Trans. Electron Dev. 20, 395–399 (1973)CrossRefADSGoogle Scholar
  42. 42.
    A. Acharyya, S. Banerjee, J.P. Banerjee, Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. J. Semiconduct. 34(2), 024001–0240012 (2013)CrossRefADSGoogle Scholar
  43. 43.
    A. Acharyya, A. Mallik, D. Banerjee, S. Ganguli, A. Das, S. Dasgupta, J.P. Banerjee, IMPATT devices based on group III–V compound semiconductors: prospects as potential terahertz radiators. HKIE Trans. 21(3), 135–147 (2014)CrossRefGoogle Scholar
  44. 44.
    A. Acharyya, S. Banerjee, J.P. Banerjee, Large-signal simulation of 94 GHz pulsed DDR silicon IMPATTs including the temperature transient effect. Radioengineering 21(4), 1218–1225 (2012)Google Scholar
  45. 45.
    A. Acharyya, J. Goswami, S. Banerjee, J.P. Banerjee, Estimation of most favorable optical window position subject to achieve finest optical control of lateral DDR IMPATT diode designed to operate at W-band. Radioengineering 23(2), 739–753 (2014)Google Scholar
  46. 46.
    A. Acharyya, S. Banerjee, J.P. Banerjee, Optical control of large-signal properties of millimeter-wave and sub-millimeter-wave DDR Si IMPATTs. J. Comput. Electr. 13, 408–424 (2014)CrossRefGoogle Scholar
  47. 47.
    A. Acharyya, A. Mallik, D. Banerjee, S. Ganguli, A. Das, S. Dasgupta, J.P. Banerjee, Large-signal characterizations of DDR IMPATT devices based on group III–V semiconductors at millimeter-wave and terahertz frequencies. J. Semiconductors 35, 084003 (2014)CrossRefADSGoogle Scholar
  48. 48.
    A. Acharyya, S. Banerjee, J.P. Banerjee, A proposed simulation technique to study the series resistance and related millimeter-wave properties of Ka-band Si IMPATTs from the electric field snap-shots. Int. J. Microw. Wirel. Technol. 5(1), 91–100 (2013)CrossRefGoogle Scholar
  49. 49.
    A. Acharyya, S. Banerjee, J.P. Banerjee, Influence of skin effect on the series resistance of millimeter-wave of IMPATT devices. J. Comput. Electron. 12(3), 511–525 (2013)CrossRefGoogle Scholar
  50. 50.
    M. Tschernitz, J. Freyer, 140 GHz GaAs double-read IMPATT diodes. Electron. Lett. 31(7), 582–583 (1995)CrossRefADSGoogle Scholar
  51. 51.
    M.G. Adlerstein, S.L.G. Chu, GaAs IMPATT diodes for 60 GHz. IEEE Electron Dev. Lett. 5, 97–98 (1984)CrossRefADSGoogle Scholar
  52. 52.
    H. Eisele, C.C. Chen, G.O. Munns, G.I. Haddad, The potential of InP IMPATT diodes as high-power millimetre-wave sources: first experimental results. IEEE MTT-S Int. Microw. Symp. Digest 2, 529–532 (1996)Google Scholar
  53. 53.
    A. Acharyya, S. Chatterjee, J. Goswami, S. Banerjee, J.P. Banerjee, Quantum drift-diffusion model for IMPATT devices. J. Comput. Electron. 13, 739–752 (2014)CrossRefGoogle Scholar
  54. 54.
    A. Acharyya, J. Goswami, S. Banerjee, J.P. Banerjee, Quantum corrected drift-diffusion model for terahertz IMPATTs based on different semiconductors. J. Comput. Electron. 14, 309–320 (2015)CrossRefGoogle Scholar
  55. 55.
    A. Acharyya, K. Datta, R. Ghosh, M. Sarkar, R. Sanyal, S. Banerjee, J.P. Banerjee, Diamond based DDR IMPATTs: prospects and potentiality as millimeter-wave source at 94 GHz atmospheric window. Radioengineering 22(2), 624–631 (2013)Google Scholar
  56. 56.
    A. Acharyya, S. Banerjee, J.P. Banerjee, Potentiality of semiconducting diamond as base material of millimeter-wave and terahertz IMPATT devices. J. Semiconductors 35(3), 034005 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • S. J. Mukhopadhyay
    • 1
  • P. Mukherjee
    • 2
  • A. Acharyya
    • 3
    Email author
  • M. Mitra
    • 1
  1. 1.Department of ETCIIESTShibpur, HowrahIndia
  2. 2.Department of Electrical EngineeringCooch Bihar Government Engineering CollegeCooch BeharIndia
  3. 3.Department of Electronics and Communication EngineeringCooch Bihar Government Engineering CollegeCooch BeharIndia

Personalised recommendations