Advertisement

Advances in Terahertz Imaging

  • Arijit SahaEmail author
Chapter
  • 56 Downloads

Abstract

Since the discovery of photography in the mid-1820s, imaging technology has moved far beyond the visible wavelength range. On one hand x-ray radiography is such an imaging technique which uses subatomic wavelengths, whereas on the other hand radars employ waves with wavelengths of several metres. However, it is seen that in last several years the field of terahertz imaging technology has become an area of interest, due to its various advantages. Actually discovery of new technologies in generation and detection of terahertz radiation have revolutionized this field. Promising applications for terahertz imaging, spectroscopy and sensing have generated much of this interest. By terahertz, generally the electromagnetic spectrum within frequency range of 0.1-10 THz is meant, which corresponds to 3000-30 μm. Terahertz waves are non-ionizing and non-invasive and hence have no risk for living organisms. Also they can provide images which are comparable to x-ray images. Though some of the techniques of THz imaging have been borrowed from well-established techniques like x-ray computed tomography, synthetic aperture radar etc., but several techniques have been exclusively developed for terahertz imaging. Compared to microwaves the THz radiation has much smaller wavelengths and thus provides higher image resolution. However, due to long wavelengths of THz radiation compared to visible wavelengths, far-field imaging using THz radiations has low resolution compared to optical systems. It is found that THz imaging has tremendous potential in applications like security screening, inspection of foods, inspection of semiconductors, pharmaceutical inspection, 2D and 3D imaging, including medical diagnosis to name a few.

Keywords

THz-TDS Reflection spectroscopy Transmission spectroscopy THz pulsed imaging 

References

  1. 1.
    M. Mittleman Daniel, Twenty years of terahertz imaging. Opt. Express 26(8), 9417–9431 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    C. Yu, S. Fan, Y. Sun, E. Pickwell-Macpherson, The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2(1), 33–45 (2012)Google Scholar
  3. 3.
    Z.D. Taylor, J. Garritano, S. Sung, N. Bajwa, D.B. Bennett, B. Nowroozi, P. Tewari, J.W. Sayre, J.P. Hubschman, S.X. Deng, E.R. Brown, W.S. Grundfest THz and mm-wave sensing of corneal tissue water content: in vivo sensing and imaging results. IEEE Trans. THz Sci. IEEE Trans. Terahertz Sci. Technol. 5(2), 184–196 (2015)Google Scholar
  4. 4.
    E. Pickwell, V.P. Wallace, Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 39(17), R301–R310 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    S. Hadjiloucas, L.S. Karatzas, J.W. Bowen, Measurements of leaf water content using terahertz radiation. IEEE Trans. Microw. Theory Tech. 47(2), 142–149 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    M. Koch, S. Hunsche, P. Schumacher, M.C. Nuss, J. Feldmann, J. Fromm, THz-imaging: a new method for density mapping of wood. Wood Sci. Technol. 32(6), 421–427 (1998)CrossRefGoogle Scholar
  7. 7.
    J.H. Teng, A. Maier Stefan, D.D. Willis Karl, 9 Disruptive Technologies Changing The World. Report 2015 (PreScouter Inc., 2015), p. 73Google Scholar
  8. 8.
    “Terahertz (THz) Technology: An Introduction and Research Update”, High Frequency Electronics Copyright © 2008 Summit Technical Media, LLC (February 2008)Google Scholar
  9. 9.
    R.A. Lewis, A review of terahertz sources. J. Phys. D Appl. Phys. 47, 374001 (2014)CrossRefGoogle Scholar
  10. 10.
    C. Thacker, A. Cooray, J. Smidt, F. De Bernardis, K. M-Wynne, A. Amblard, R. Auld, M. Baes, D.L. Clements, A. Dariush, G. De Zotti, L. Dunne, S. Eales, R. Hopwood, C. Hoyos, E. Ibar, M. Jarvis, S. Maddox, M.J. Michalowski, E. Pascale, D. Scott, S. Serjeant, M.W.L. Smith, E. Valiante, P. van der Werf, H-Atlas: the cosmic abundance of dust from the far‐infrared background power spectrum. The Astrophysical J. 768, 58 (2013)Google Scholar
  11. 11.
    V.M. Zolotarev, R.K. Mamedov, A.N. Bekhterev, B.Z. Volchek, Spectral emissivity of a globar lamp in the 2–50 μm region. J. Opt. Technol. 74(6), 378–384 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Pérez, T. González, D. Pardo, J. Mateos, Terahertz Gunn-like oscillations in GaAs/InAlAs planar diodes. Appl. Phys. Lett. 103, 094516 (2008)Google Scholar
  13. 13.
    A. Maestrini, J.S. Ward, J.J. Gill, C. Lee, B. Thomas, R.H. Lin, G. Chattopadhyay, I. Mehdi, A frequency-multiplied source with more than 1 mW of power across the 900-GHz band. IEEE Trans. Microw. Theory Tech. 58(7), 1925–1932 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    W. He, C.R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, A.W. Cross, High power wideband gyrotron backward wave oscillator operating towards the terahertz region. Phys. Rev. Lett. 110, 165101 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    V.L. Bratman, Y.K. Kalynov, V.N. Manuilov, Large-orbit gyrotron operation in the terahertz frequency range. Phys. Rev. Lett. 102, 245101 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Byrd, W.P. Leemans, A. Loftsdottir, B. Marcelis, Michael C. Martin, W.R. McKinney, F. Sannibale, T. Scarvie, C. Steier, Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. Phys. Rev. Lett. 89, 224801 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    J. Horvat, R.A. Lewis, Peeling adhesive tape emits electromagnetic radiation at terahertz frequencies. Opt. Lett. 34, 2195–2197 (2009).  https://doi.org/10.1364/OL.34.002195ADSCrossRefGoogle Scholar
  18. 18.
    D.L. Cortie, R.A. Lewis, Terahertz surfoluminescence. Surf. Sci. 606, 1573–1576 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H.E. Beere, D.A. Ritchie, S.P. Khanna, E.H. Linfield, A.G. Davies, Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457, 174–178 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photonics 1, 517–525 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    X.L. Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, Paul K. Chu, Green light stimulates terahertz emission from mesocrystal microspheres. Nat. Nanotechnol. 6, 103–106 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    G. Jotzu, M. Cooper, P. Parkinson, M.B. Johnston, Virtual terahertz spectrometer (2009). https://www.thz.physics.ox.ac.uk
  23. 23.
    B.B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1719 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    K. Serita, S. Mizuno, H. Murakami, I. Kawayama, Y. Takahashi, M. Yoshimura, Y. Mori, J. Darmo, M. Tonouchi, Scanning laser terahertz near-field imaging system. Opt. Express 20(12), 12959–12965 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J.J. Lynch, P.A. Macdonald, H.P. Moyer, R.G. Nagele, Passive millimeter wave imaging sensors for commercial markets. Appl. Opt. 49(19), E7–E12 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    V.G. Kolinko, S.H. Lin, A. Shek, W. Manning, C. Martin, M. Hall, O. Kirsten, J. Moore, D.A. Wikner, A passive millimeter-wave imaging system for concealed weapons and explosives detection. Proc. SPIE 5781, (Optics and Photonics in Global Homeland Security, 2005), pp. 85–92. (19 May 2005)Google Scholar
  27. 27.
    H. Song, T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications. 1st edn. (Jenny Stanford Publishing, 2015), p. 565Google Scholar
  28. 28.
    W.L. Chan, J. Deibel, D.M. Mittleman, Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Lee C. H. Microwave Photonics. 2nd edn. (CRC Press, 2013), p. 441Google Scholar
  30. 30.
    H. Guerboukha, K. Nallappan, M. Skorobogatiy, Toward real-time terahertz imaging. Adv. Opt. Photonics 10(4), 843–938 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    A.J. Fitzgerald, Classification of terahertz-pulsed imaging data from excised breast tissue. J. Biomed. Opt. 17, 016005 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    T. Löffler, K. Siebert, S. Czasch, T. Bauer, H.G. Roskos, Visualization and classification in biomedical terahertz pulsed imaging. Phys. Med. Biol. 47, 3847–3852 (2002)CrossRefGoogle Scholar
  33. 33.
    J.P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, P. Mounaix, Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 35, 382–411 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Duvillaret, F. Garet, J.L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2, 739–746 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    L. Thrane, R.H. Jacobsen, P.U. Jepsen, S.R. Keiding, THz reflection spectroscopy of liquid water. Chem. Phys. Lett. 240, 330–333 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    P.U. Jepsen, B.M. Fischer, Dynamic range in terahertz time-domain transmission and reflection spectroscopy. Opt. Lett. 30, 29–31 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    P.U. Jepsen, U. Møller, H. Merbold, Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy. Opt. Express 15, 14717–14737 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    P.U. Jepsen, J.K. Jensen, U. Møller, Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy. Opt. Express 16, 9318–9331 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    U. Møller, D.G. Cooke, K. Tanaka, P.U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids. J. Opt. Soc. Am. B 26, A113–A125 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M. Naftaly, R. Dudley, Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers. Opt. Lett. 34, 1213–1215 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    R.M. Woodward, B.E. Cole, V.P. Wallace, R.J. Pye, D.D. Arnone, E.H. Linfield, M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys. Med. Biol. 47, 3853–3863 (2002)CrossRefGoogle Scholar
  42. 42.
    S. Fan, Y. He, B.S. Ung, E. Pickwell-MacPherson, The growth of biomedical terahertz research. J. Phys. D 47, 374009 (2014)CrossRefGoogle Scholar
  43. 43.
    J.F. O’Hara, W. Withayachumnankul, I. Al-Naib, A review on thin-film sensing with terahertz waves. J. Infrared Millim. Terahertz Waves 33, 245–291 (2012)CrossRefGoogle Scholar
  44. 44.
    P.H. Bolivar, M. Brucherseifer, J.G. Rivas, R. Gonzalo, I. Ederra, A. Reynolds, M. Holker, P. de Maagt, Measurement of the dielectric constant and loss tangent of high dielectric constant materials at terahertz frequencies. IEEE Trans. Microw. Theory Tech. 51, 1062–1066 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy for material characterization. Proc. IEEE 95, 1658–1665 (2007)CrossRefGoogle Scholar
  46. 46.
    I. Pupeza, R. Wilk, M. Koch, Highly accurate optical material parameter determination with THz time-domain spectroscopy. Opt. Express 15, 4335–4350 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    M. Hangyo, T. Nagashima, S. Nashima, Spectroscopy by pulsed terahertz radiation. Meas. Sci. Technol. 13, 1727–1738 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    W. Withayachumnankul, B. Ferguson, T. Rainsford, S.P. Mickan, D. Abbott, Simple material parameter estimation via terahertz time-domain spectroscopy. Electron. Lett. 41, 800–801 (2005)CrossRefGoogle Scholar
  49. 49.
    J. Lloyd-Hughes, T.I. Jeon, A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 33, 871–925 (2012)CrossRefGoogle Scholar
  50. 50.
    F.A. Hegmann, O. Ostroverkhova, D.G. Cooke, Probing organic semiconductors with terahertz pulses, in Photophysics of Molecular Materials (Wiley, 2006), pp. 367–428Google Scholar
  51. 51.
    D.M. Mittleman, S. Hunsche, L. Boivin, M.C. Nuss, T-ray tomography. Opt. Lett. 22, 904–906 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    A.J.L. Adam, P.C.M. Planken, S. Meloni, J. Dik, Terahertz imaging of hidden paint layers on canvas, in 34th International Conference Infrared, Millimeter, Terahertz Waves (IRMMW-THz), vol. 17, pp. 904–906 (2009)Google Scholar
  53. 53.
    A. Cosentino, Terahertz and cultural heritage science: examination of art and archaeology. Technologies 4, 1–13 (2016)CrossRefGoogle Scholar
  54. 54.
    C. Seco-Martorell, V. López-Domínguez, G. Arauz-Garofalo, A. Redo-Sanchez, J. Palacios, J. Tejada, Goya’s artwork imaging with terahertz waves. Opt. Express 21, 17800–17805 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    E. Abraham, K. Fukunaga, Terahertz imaging applied to the examination of artistic objects. Stud. Conserv. 60, 343–352 (2015)CrossRefGoogle Scholar
  56. 56.
    K. Fukunaga, M. Picollo, Terahertz spectroscopy applied to the analysis of artists’ materials. Appl. Phys. A 100, 591–597 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Y.-C. Shen, Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417, 48–60 (2011)CrossRefGoogle Scholar
  58. 58.
    J. Sibik, J.A. Zeitler, Direct measurement of molecular mobility and crystallisation of amorphous pharmaceuticals using terahertz spectroscopy. Adv. Drug Deliv. Rev. 100, 147–157 (2016)CrossRefGoogle Scholar
  59. 59.
    J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, T. Rades, Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting—a review. J. Pharm. Pharmacol. 59, 209–223 (2007)CrossRefGoogle Scholar
  60. 60.
    M. Haaser, K.C. Gordon, C.J. Strachan, T. Rades, Terahertz pulsed imaging as an advanced characterisation tool for film coatings—a review. Int. J. Pharm. 457, 510–520 (2013)CrossRefGoogle Scholar
  61. 61.
    A. Brahm, M. Kunz, S. Riehemann, G. Notni, A. Tünnermann, Volumetric spectral analysis of materials using terahertz-tomography techniques. Appl. Phys. B 100, 151–158 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    B. Recur, J.P. Guillet, I. Manek-Hönninger, J.C. Delagnes, W. Benharbone, P. Desbarats, J.P. Domenger, L. Canioni, P. Mounaix, Propagation beam consideration for 3D THz computed tomography. Opt. Express 20, 5817–5829 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    B. Recur, H. Balacey, J. Bou Sleiman, J.B. Perraud, J.-P. Guillet, A. Kingston, P. Mounaix, Ordered subsets convex algorithm for 3D terahertz transmission tomography. Opt. Express 22, 23299–23309 (2014)Google Scholar
  64. 64.
    W. Withayachumnankul, G.M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B.S.Y. Ung, J. Balakrishnan, B.W.H. Ng, B. Ferguson, S.P. Mickan, B.M. Fischer, D. Abbott, T-ray sensing and imaging. Proc. IEEE 95, 1528–1558 (2007)CrossRefGoogle Scholar
  65. 65.
    T. Yuan, J.Z. Xu, X.C. Zhang, Development of terahertz wave microscopes. Infrared Phys. Technol. 45, 417–425 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    A.J.L. Adam, Review of near-field terahertz measurement methods and their applications: how to achieve sub-wavelength resolution at THz frequencies. J. Infrared Millim. Terahertz Waves 32, 976–1019 (2011)CrossRefGoogle Scholar
  67. 67.
    F. Blanchard, A. Doi, T. Tanaka, K. Tanaka, Real-time, subwavelength terahertz imaging. Annu. Rev. Mater. Res. 43, 237–259 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    U.S. de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M.S. Vitiello, P.A. Benedetti, H.E. Beere, D.A. Ritchie, Terahertz confocal microscopy with a quantum cascade laser source. Opt. Express 20, 21924–21931 (2012)Google Scholar
  69. 69.
    N.N. Zinov’ev, A.V. Andrianov, Confocal terahertz imaging. Appl. Phys. Lett. 95, 011114 (2009)Google Scholar
  70. 70.
    M. Flammini, C. Bonsi, C. Ciano, V. Giliberti, E. Pontecorvo, P. Italia, E. DelRe, M. Ortolani, Confocal terahertz imaging of ancient manuscripts. J. Infrared Millim. Terahertz Waves 38, 435–442 (2017)CrossRefGoogle Scholar
  71. 71.
    M.A. Salhi, I. Pupeza, M. Koch, Confocal THz laser microscope. J. Infrared Millim. Terahertz Waves 31, 358–366 (2010)Google Scholar
  72. 72.
    N.V. Chernomyrdin, A.O. Schadko, S.P. Lebedev, V.L. Tolstoguzov, V.N. Kurlov, I.V. Reshetov, I.E. Spektor, M. Skorobogatiy, S.O. Yurchenko, K.I. Zaytsev, Solid immersion terahertz imaging with sub-wavelength resolution. Appl. Phys. Lett. 110, 221109 (2017)ADSCrossRefGoogle Scholar
  73. 73.
    J. Grzyb, B. Heinemann, U.R. Pfeiffer, Solid-state terahertz superresolution imaging device in 130-nm SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech. 65, 4357–4372 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    M.I. Dyakonov, M.S. Shur, Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640–1645 (1996)ADSCrossRefGoogle Scholar
  75. 75.
    W. Knap, M.I. Dyakonov, Field effect transistors for terahertz applications, in Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, 2013), pp. 121–155Google Scholar
  76. 76.
    R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, M.S. Shur, Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power. Appl. Phys. Lett. 89, 253511 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolvar, D. Glaab, H.G. Roskos, Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    Y.-S. Lee, Continuous-wave terahertz sources and detectors, in Principles of Terahertz Science and Technology (Springer, 2009), pp. 117–157Google Scholar
  79. 79.
    J. Yang, S. Ruan, M. Zhang, Real-time, continuous-wave terahertz imaging by a pyroelectric camera. Chin. Opt. Lett. 6, 29–31 (2008)CrossRefGoogle Scholar
  80. 80.
    M.J.E. Golay, The theoretical and practical sensitivity of the pneumatic infra-red detector. Rev. Sci. Instrum. 20, 816–820 (1949)ADSCrossRefGoogle Scholar
  81. 81.
    P.L. Richards, Bolometers for infrared and millimeter waves. J. Appl. Phys. 76, 1–24 (1994)ADSCrossRefGoogle Scholar
  82. 82.
    A.W.M. Lee, B.S. Wil, S. Kumar, Q. Hu, J.L. Reno, Real-time imaging using a 4.3-THz quantum cascade laser and a 320 × 240 microbolometer focal-plane array. IEEE Photon. Technol. Lett. 18, 1415–1417 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    M.A. Dem’yanenko, D.G. Esaev, B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov, Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser. Appl. Phys. Lett. 92, 131116 (2008)Google Scholar
  84. 84.
    A.W. Lee, Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Opt. Lett. 30, 2563–2565 (2005)ADSCrossRefGoogle Scholar
  85. 85.
    B.N. Behnken, G. Karunasiri, D.R. Chamberlin, P.R. Robrish, J. Faist, Real-time imaging using a 28 THz quantum cascade laser and uncooled infrared microbolometer camera. Opt. Lett. 33, 440–442 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    F. Sizov, A. Rogalski, THz detectors. Prog. Quantum Electron. 34, 278–347 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    N. Oda, S. Kurashina, M. Miyoshi, K. Doi, T. Ishi, T. Sudou, T. Morimoto, H. Goto, T. Sasaki, Microbolometer terahertz focal plane array and camera with improved sensitivity in the sub-terahertz region. J. Infrared Millim. Terahertz Waves 36, 947–960 (2015)CrossRefGoogle Scholar
  88. 88.
    N. Kanda, K. Konishi, N. Nemoto, K. Midorikawa, M. Kuwata-Gonokami, Real-time broadband terahertz spectroscopic imaging by using a highsensitivity terahertz camera. Sci. Rep. 7, 42540 (2017)ADSCrossRefGoogle Scholar
  89. 89.
    K. Fan, J.Y. Suen, X. Liu, W.J. Padilla, All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601–604 (2017)ADSCrossRefGoogle Scholar
  90. 90.
    B. Kearney, F. Alves, D. Grbovic, G. Karunasiri, Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications. Opt. Eng. 52, 013801 (2013)ADSCrossRefGoogle Scholar
  91. 91.
    W. Withayachumnankul, C.M. Shah, C. Fumeaux, B.S.Y. Ung, W.J. Padilla, M. Bhaskaran, D. Abbott, S. Sriram, Plasmonic resonance toward terahertz perfect absorbers. ACS Photon. 1, 625–630 (2014)CrossRefGoogle Scholar
  92. 92.
    F. Alves, B. Kearney, D. Grbovic, N.V. Lavrik, G. Karunasiri, Strong terahertz absorption using SiO2/Al based metamaterial structures. Appl. Phys. Lett. 100, 111104 (2012)ADSCrossRefGoogle Scholar
  93. 93.
    I.E. Carranza, J.P. Grant, J. Gough, D. Cumming, Terahertz metamaterials absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays. IEEE J. Sel. Top. Quantum Electron. 23, 4700508 (2017)Google Scholar
  94. 94.
    E. Leiss-Holzinger, K. Wiesauer, H. Stephani, B. Heise, D. Stifter, B. Kriechbaumer, S.J. Spachinger, C. Gusenbauer, G. Withalm, Imaging of the inner structure of cave bear teeth by novel non-destructive techniques, Palaeontol. Electron. 18 (2015)Google Scholar
  95. 95.
    E.M. Pogson, Thesis, Terahertz Applications in Medicine, the Environment and Optics, University of Wollongong, Australia, 2012Google Scholar
  96. 96.
    Y.C. Sim, J.Y. Park, K.M. Ahn, C. Park, J.H. Son, Terahertz imaging of excised oral cancer at frozen temperature. Biomed. Opt. Express 4, 1413–1421 (2013)CrossRefGoogle Scholar
  97. 97.
    D.A. Crawley, C. Longbottom, B.E. Cole, C.M. Ciesla, D. Arnone et al., Terahertz pulse imaging: a pilot study of potential applications in dentistry. Caries Res. 37, 352–359 (2003)CrossRefGoogle Scholar
  98. 98.
    D. Crawley, C. Longbottom, V.P. Wallace, B. Cole, D. Arnone et al., Three-dimensional terahertz pulse imaging of dental tissue. J. Biomed. Opt. 8, 303–307 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    K. Kawase, Terahertz imaging for drug detection and large-scale integrated circuit inspection. Opt. Photonics News 15(10), 34–39 (2004)ADSCrossRefGoogle Scholar
  100. 100.
    J.F. Federici et al., THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 20(7), S266–S280 (2005)CrossRefGoogle Scholar
  101. 101.
    M. Lu et al., Detection and identification of illicit drugs using terahertz imaging. J. Appl. Phys. 100(10) (2006)Google Scholar
  102. 102.
    C. Baker et al., Detection of concealed explosives at a distance using terahertz technology. Proc. IEEE 95(8), 1559–1565 (2007)CrossRefGoogle Scholar
  103. 103.
    H. Zhong, A. Redo-Sanchez, X.C. Zhang, Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system. Opt. Express 14(20), 9130–9141 (2006)ADSCrossRefGoogle Scholar
  104. 104.
    M.C. Kemp, Explosives detection by terahertz spectroscopy—a bridge too far? IEEE Trans. Terahertz Sci. Technol. 1(1), 282–292 (2011)ADSCrossRefGoogle Scholar
  105. 105.
    D.G. Allis, T.M. Korter, Theoretical analysis of the terahertz spectrum of the high explosive PETN. ChemPhysChem 7(11), 2398–2408 (2006)CrossRefGoogle Scholar
  106. 106.
    R. Appleby, R.N. Anderton, Millimeter-wave and submillimeter-wave imaging for security and surveillance. Proc. IEEE 95(8), 1683–1690 (2007)CrossRefGoogle Scholar
  107. 107.
    H. Seong-Tae et al., Development of a compact sub-terahertz gyrotron and its application to t-ray real-time imaging for food inspection, in 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2012Google Scholar
  108. 108.
    C. Jördens, M. Koch, Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt. Eng. 47(3), 037003 (2008)ADSCrossRefGoogle Scholar
  109. 109.
    J.B. Jackson et al., Terahertz imaging for non-destructive evaluation of mural paintings. Opt. Commun. 281(4), 527–532 (2008)ADSCrossRefGoogle Scholar
  110. 110.
    E. Abraham et al., Broadband terahertz imaging of documents written with lead pencils. Opt. Commun. 282(15), 3104–3107 (2009)ADSCrossRefGoogle Scholar
  111. 111.
    A.J.L. Adam et al., TeraHertz imaging of hidden paintlayers on canvas. Opt. Express 17(5), 3407–3416 (2009)ADSCrossRefGoogle Scholar
  112. 112.
    L. Oehrstroem et al., Technical note: terahertz imaging of ancient mummies and bone. Am. J. Phys. Anthropol. 142(3), 497–500 (2010)CrossRefGoogle Scholar
  113. 113.
    M. Walther, B.M. Fischer, A. Ortner, A. Bitzer, A. Thoman, H. Helm, Chemical sensing and imaging with pulsed terahertz radiation. Anal. Bioanal. Chem. 397 (2010)Google Scholar
  114. 114.
    Y.C. Shen, P.F. Taday, Development and application of terahertz pulsed imaging for non-destructive inspection of pharmaceutical tablet. IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008)ADSCrossRefGoogle Scholar
  115. 115.
    E.K. Rahani et al., Mechanical damage detection in polymer tiles by THz radiation. IEEE Sens. J. 11(8), 1720–1725 (2011)ADSCrossRefGoogle Scholar
  116. 116.
    P. Mousavi et al., Simultaneous composition and thickness measurement of paper using terahertz timedomain spectroscopy. Appl. Opt. 48(33), 6541–6546 (2009)ADSCrossRefGoogle Scholar
  117. 117.
    D.T. Nguyen, Ph.D. Thesis: Design, Modelling, and Characterization of Innovative THz Detectors. Université de Grenoble, 2012Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringB. P. Poddar Institute of Management and TechnologyKolkataIndia

Personalised recommendations