Advertisement

Continuous-Time Biased Min-Consensus

  • Yinyan Zhang
  • Shuai Li
Chapter
  • 30 Downloads

Abstract

In this chapter, we present an interesting result of a modified min-consensus protocol, which is referred to as the biased min-consensus for continuous-time multi-agent systems. Through a proper modification, we show that the modified protocol can generate a totally different behavior of the agents in the multi-agent system. Specifically, with the min-consensus protocol, the state values of the all agents in the multi-agent system globally asymptotically converge to the minimum of the initial state values. However, when the biased min-consensus protocol is adopted, the agents states are still globally asymptotically convergent but the state values of the agents in the multi-agent system are not necessarily the same, which essentially can constitute a solution to the shortest path problem defined in the graph according to our theoretical analysis on the biased min-consensus protocol. This shows that by modifying an existing consensus protocol, we may have higher-level intelligence for the simple agents, leading to the new perspective about whether intelligence can be generated via the usage of control theory. To evaluate the performance of the biased min-consensus protocol and validate the theoretical results, we perform simulations about the shortest path finding over both simple graphs with only a few nodes and complicated graphs with more than 40,000 nodes. A direct extension of the presented method to the complete coverage problem of mobile robots further demonstrate the potential of the presented result in the practice.

References

  1. 1.
    T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms (MIT Press, London, 1990)zbMATHGoogle Scholar
  2. 2.
    Y. Lu, X. Huo, P. Tsiotras, A beamlet-based graph structure for path planning using multiscale information. IEEE Trans. Autom. Control 57(5), 1166–1178 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    S. Ma, K. Feng, J. Li, H. Wang, G. Cong, J. Huai, Proxies for shortest path and distance queries. IEEE Trans. Knowl. Data Eng. 28(7), 1835–1850 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Ulen, P. Strandmark, F. Kahl, Shortest paths with higher-order regularization. IEEE Trans. IEEE Trans. Pattern Anal. Mach. Intell. 37(12), 2588–2600 (2015)CrossRefGoogle Scholar
  5. 5.
    T.V. Hoai, P.T. An, N.N. Hai, Multiple shooting approach for computing approximately shortest paths on convex polytopes. J. Comput. Appl. Math. 317, 235–246 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    L. Fu, D. Sun, L.R. Rilett, Heuristic shortest path algorithms for transportation applications: state of the art. Comput. Oper. Res. 33(11), 3324–3343 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    X. Lu, M. Camitz, Finding the shortest paths by node combination. Appl. Math. Comput. 217(13), 6401–6408 (2011)MathSciNetzbMATHGoogle Scholar
  8. 8.
    A.W. Mohemmed, N.C. Sahoo, T.K. Geok, Solving shortest path problem using particle swarm optimization. Appl. Soft Comput. 8(4), 1643–1653 (2008)CrossRefGoogle Scholar
  9. 9.
    G.E. Jan, C.C. Sun, W.C. Tsai, T.H. Lin, An O(nlogn) shortest path algorithm based on Delaunay triangulation. IEEE/ASME Trans. Mechatron. 19(2), 660–666 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Carli, S. Zampieri, Network clock synchronization based on the second-order linear consensus algorithm. IEEE Trans. Autom. Control 59(2), 409–422 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    L. Jin, S. Li, B. Hu, M. Liu, A survey on projection neural networks and their applications. Appl. Soft Comput. 76, 533–544 (2019)CrossRefGoogle Scholar
  12. 12.
    B. Liao, Q. Xiang, S. Li, Bounded Z-type neurodynamics with limited-time convergence and noise tolerance for calculating time-dependent Lyapunov equation. Neurocomputing 325, 234–241 (2019)CrossRefGoogle Scholar
  13. 13.
    P.S. Stanimirovic, V.N. Katsikis, S. Li, Integration enhanced and noise tolerant ZNN for computing various expressions involving outer inverses. Neurocomputing 329, 129–143 (2019)CrossRefGoogle Scholar
  14. 14.
    Z. Xu, S. Li, X. Zhou, W. Yan, T. Cheng, D. Huang, Dynamic neural networks based kinematic control for redundant manipulators with model uncertainties. Neurocomputing 329, 255–266 (2019)CrossRefGoogle Scholar
  15. 15.
    L. Xiao, K. Li, Z. Tan, Z. Zhang, B. Liao, K. Chen, L. Jin, S. Li, Nonlinear gradient neural network for solving system of linear equations. Inf. Process. Lett. 142, 35–40 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    D. Chen, S. Li, Q. Wu, Rejecting chaotic disturbances using a super-exponential-zeroing neurodynamic approach for synchronization of chaotic sensor systems. Sensors 19(1), 74 (2019)CrossRefGoogle Scholar
  17. 17.
    Q. Wu, X. Shen, Y. Jin, Z. Chen, S. Li, A.H. Khan, D. Chen, Intelligent beetle antennae search for UAV sensing and avoidance of obstacles. Sensors 19(8), 1758 (2019)CrossRefGoogle Scholar
  18. 18.
    Q. Xiang, B. Liao, L. Xiao, L. Lin, S. Li, Discrete-time noise-tolerant Zhang neural network for dynamic matrix pseudoinversion. Soft Comput. 23(3), 755–766 (2019)zbMATHCrossRefGoogle Scholar
  19. 19.
    Z. Zhang, S. Chen, S. Li, Compatible convex-nonconvex constrained QP-based dual neural networks for motion planning of redundant robot manipulators. IEEE Trans. Control Syst. Technol. 27(3), 1250–1258 (2019)CrossRefGoogle Scholar
  20. 20.
    Y. Zhang, S. Li, X. Zhou, Recurrent-neural-network-based velocity-level redundancy resolution for manipulators subject to a joint acceleration limit. IEEE Trans. Ind. Electron. 66(5), 3573–3582 (2019)CrossRefGoogle Scholar
  21. 21.
    L. Jin, S. Li, B. Hu, M. Liu, J. Yu, A noise-suppressing neural algorithm for solving the time-varying system of linear equations: a control-based approach. IEEE Trans. Ind. Inf. 15(1), 236–246 (2019)CrossRefGoogle Scholar
  22. 22.
    Y. Li, S. Li, B. Hannaford, A model-based recurrent neural network with randomness for efficient control with applications. IEEE Trans. Ind. Inf. 15(4), 2054–2063 (2019)CrossRefGoogle Scholar
  23. 23.
    L. Xiao, S. Li, F. Lin, Z. Tan, A.H. Khan, Zeroing neural dynamics for control design: comprehensive analysis on stability, robustness, and convergence speed. IEEE Trans. Ind. Inf. 15(5), 2605–2616 (2019)CrossRefGoogle Scholar
  24. 24.
    S. Muhammad, M.U. Rafique, S. Li, Z. Shao, Q. Wang, X. Liu, Reconfigurable battery systems: a survey on hardware architecture and research challenges. ACM Trans. Des. Autom. Electron. Syst. 24(2), 19:1–19:27 (2019)CrossRefGoogle Scholar
  25. 25.
    S. Li, Z. Shao, Y. Guan, A dynamic neural network approach for efficient control of manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(5), 932–941 (2019)CrossRefGoogle Scholar
  26. 26.
    L. Jin, S. Li, H. Wang, Z. Zhang, Nonconvex projection activated zeroing neurodynamic models for time-varying matrix pseudoinversion with accelerated finite-time convergence. Appl. Soft Comput. 62, 840–850 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Liu, S. Li, X. Li, L. Jin, C. Yi, Z. Huang, Intelligent controllers for multirobot competitive and dynamic tracking. Complexity 2018, 4573631:1–4573631:12 (2018)zbMATHGoogle Scholar
  28. 28.
    D. Chen, Y. Zhang, S. Li, Zeroing neural-dynamics approach and its robust and rapid solution for parallel robot manipulators against superposition of multiple disturbances. Neurocomputing 275, 845–858 (2018)CrossRefGoogle Scholar
  29. 29.
    L. Jin, S. Li, J. Yu, J. He, Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018)CrossRefGoogle Scholar
  30. 30.
    L. Xiao, S. Li, J. Yang, Z. Zhang, A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization. Neurocomputing 285, 125–132 (2018)CrossRefGoogle Scholar
  31. 31.
    P.S. Stanimirovic, V.N. Katsikis, S. Li, Hybrid GNN-ZNN models for solving linear matrix equations. Neurocomputing 316, 124–134 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Li, J. Yu, S. Li, L. Ni, A nonlinear and noise-tolerant ZNN model solving for time-varying linear matrix equation. Neurocomputing 317, 70–78 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Xiao, B. Liao, S. Li, K. Chen, Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations,. Neural Netw. 98, 102–113 (2018)CrossRefGoogle Scholar
  34. 34.
    L. Xiao, Z. Zhang, Z. Zhang, W. Li, S. Li, Design, verification and robotic application of a novel recurrent neural network for computing dynamic Sylvester equation. Neural Netw. 105, 185–196 (2018)CrossRefGoogle Scholar
  35. 35.
    Z. Zhang, Y. Lu, L. Zheng, S. Li, Z. Yu, Y. Li, A new varying-parameter convergent-differential neural-network for solving time-varying convex QP problem constrained by linear-equality. IEEE Trans. Autom. Control 63(12), 4110–4125 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Z. Zhang, Y. Lin, S. Li, Y. Li, Z. Yu, Y. Luo, Tricriteria optimization-coordination motion of dual-redundant-robot manipulators for complex path planning. IEEE Trans. Control Syst. Technol. 26(4), 1345–1357 (2018)CrossRefGoogle Scholar
  37. 37.
    X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, H. Leung, Incorporation of efficient second-order solvers into latent factor models for accurate prediction of missing QoS data. IEEE Trans. Cybern. 48(4), 1216–1228 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator. IEEE Trans. Ind. Inf. 14(1), 98–105 (2018)CrossRefGoogle Scholar
  39. 39.
    L. Jin, S. Li, B. Hu, RNN models for dynamic matrix inversion: a control-theoretical perspective. IEEE Trans. Ind. Inf. 14(1), 189–199 (2018)CrossRefGoogle Scholar
  40. 40.
    X. Luo, M. Zhou, S. Li, M. Shang, An inherently nonnegative latent factor model for high-dimensional and sparse matrices from industrial applications. IEEE Trans. Ind. Inf. 14(5), 2011–2022 (2018)CrossRefGoogle Scholar
  41. 41.
    D. Chen, Y. Zhang, S. Li, Tracking control of robot manipulators with unknown models: a jacobian-matrix-adaption method. IEEE Trans. Ind. Inf. 14(7), 3044–3053 (2018)CrossRefGoogle Scholar
  42. 42.
    J. Li, Y. Zhang, S. Li, M. Mao, New discretization-formula-based zeroing dynamics for real-time tracking control of serial and parallel manipulators. IEEE Trans. Ind. Inf. 14(8), 3416–3425 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Li, H. Wang, M.U. Rafique, A novel recurrent neural network for manipulator control with improved noise tolerance. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1908–1918 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    H. Wang, P. X. Liu, S. Li, D. Wang, Adaptive neural output-feedback control for a class of nonlower triangular nonlinear systems with unmodeled dynamics. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3658–3668 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    S. Li, M. Zhou, X. Luo, Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans. Neural Netw. Learn. Syst. 29(10), 4791–4801 (2018)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Y. Li, S. Li, B. Hannaford, A novel recurrent neural network for improving redundant manipulator motion planning completeness, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Piscataway, 2018), pp. 2956–2961Google Scholar
  47. 47.
    M.A. Mirza, S. Li, L. Jin, Simultaneous learning and control of parallel Stewart platforms with unknown parameters. Neurocomputing 266, 114–122 (2017)CrossRefGoogle Scholar
  48. 48.
    L. Jin, S. Li, Nonconvex function activated zeroing neural network models for dynamic quadratic programming subject to equality and inequality constraints. Neurocomputing 267, 107–113 (2017)CrossRefGoogle Scholar
  49. 49.
    L. Jin, S. Li, B. Liao, Z. Zhang, Zeroing neural networks: a survey. Neurocomputing 267, 597–604 (2017)CrossRefGoogle Scholar
  50. 50.
    L. Jin, Y. Zhang, S. Li, Y. Zhang, Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans. Autom. Control 62(2), 992–997 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Z. You, M. Zhou, X. Luo, S. Li, Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)CrossRefGoogle Scholar
  52. 52.
    L. Jin, S. Li, H. M. La, X. Luo, Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans. Ind. Electron. 64(6), 4710–4720 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Muhammad, M.U. Rafique, S. Li, Z. Shao, Q. Wang, N. Guan, A robust algorithm for state-of-charge estimation with gain optimization. IEEE Trans. Ind. Inf. 13(6), 2983–2994 (2017)CrossRefGoogle Scholar
  54. 54.
    X. Luo, J. Sun, Z. Wang, S. Li, M. Shang, Symmetric and nonnegative latent factor models for undirected, high-dimensional, and sparse networks in industrial applications. IEEE Trans. Ind. Inf. 13(6), 3098–3107 (2017)CrossRefGoogle Scholar
  55. 55.
    S. Li, Y. Zhang, L. Jin, Kinematic control of redundant manipulators using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2243–2254 (2017)MathSciNetCrossRefGoogle Scholar
  56. 56.
    X. Luo, S. Li, Non-negativity constrained missing data estimation for high-dimensional and sparse matrices, in Proceedings of the 13th IEEE Conference on Automation Science and Engineering (CASE) (IEEE, Piscataway, 2017), pp. 1368–1373Google Scholar
  57. 57.
    Y. Li, S. Li, D.E. Caballero, M. Miyasaka, A. Lewis, B. Hannaford, Improving control precision and motion adaptiveness for surgical robot with recurrent neural network, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, Piscataway, 2017), pp. 3538–3543Google Scholar
  58. 58.
    X. Luo, M. Zhou, M. Shang, S. Li, Y. Xia, A novel approach to extracting non-negative latent factors from non-negative big sparse matrices. IEEE Access 4, 2649–2655 (2016)CrossRefGoogle Scholar
  59. 59.
    M. Mao, J. Li, L. Jin, S. Li, Y. Zhang, Enhanced discrete-time Zhang neural network for time-variant matrix inversion in the presence of bias noises. Neurocomputing 207, 220–230 (2016)CrossRefGoogle Scholar
  60. 60.
    Y. Huang, Z. You, X. Li, X. Chen, P. Hu, S. Li, X. Luo, Construction of reliable protein-protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)CrossRefGoogle Scholar
  61. 61.
    X. Luo, M. Zhou, H. Leung, Y. Xia, Q. Zhu, Z. You, S. Li, An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering. IEEE Trans. Autom. Sci. Eng. 13(1), 333–343 (2016)CrossRefGoogle Scholar
  62. 62.
    S. Li, Z. You, H. Guo, X. Luo, Z. Zhao, Inverse-free extreme learning machine with optimal information updating. IEEE Trans. Cybern. 46(5), 1229–1241 (2016)CrossRefGoogle Scholar
  63. 63.
    L. Jin, Y. Zhang, S. Li, Y. Zhang, Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans. Ind. Electron. 63(11), 6978–6988 (2016)CrossRefGoogle Scholar
  64. 64.
    X. Luo, M. Zhou, S. Li, Z. You, Y. Xia, Q. Zhu, A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 579–592 (2016)MathSciNetCrossRefGoogle Scholar
  65. 65.
    L. Jin, Y. Zhang, S. Li, Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises. IEEE Trans. Neural Netw. Learn. Syst. 27(12), 2615–2627 (2016)CrossRefGoogle Scholar
  66. 66.
    X. Luo, M. Shang, S. Li, Efficient extraction of non-negative latent factors from high-dimensional and sparse matrices in industrial applications, in Proceedings of the IEEE 16th International Conference on Data Mining (ICDM) (IEEE, Piscataway, 2016), pp. 311–319Google Scholar
  67. 67.
    X. Luo, S. Li, M. Zhou, Regularized extraction of non-negative latent factors from high-dimensional sparse matrices, in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2016), pp. 1221–1226Google Scholar
  68. 68.
    X. Luo, Z. Ming, Z. You, S. Li, Y. Xia, H. Leung, Improving network topology-based protein interactome mapping via collaborative filtering. Knowl.-Based Syst. 90, 23–32 (2015)CrossRefGoogle Scholar
  69. 69.
    X. Luo, M. Zhou, S. Li, Y. Xia, Z. You, Q. Zhu, H. Leung, An efficient second-order approach to factorize sparse matrices in recommender systems. IEEE Trans. Ind. Inf. 11(4), 946–956 (2015)CrossRefGoogle Scholar
  70. 70.
    L. Wong, Z. You, S. Li, Y. Huang, G. Liu, Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor, in Proceedings of the International Conference on Intelligent Computing (Springer, Cham, 2015), pp. 713–720Google Scholar
  71. 71.
    Z. You, J. Yu, L. Zhu, S. Li, Z. Wen, A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145, 37–43 (2014)CrossRefGoogle Scholar
  72. 72.
    S. Li, Y. Li, Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans. Cybern. 44(8), 1397–1407 (2014)CrossRefGoogle Scholar
  73. 73.
    Y. Li, S. Li, Q. Song, H. Liu, M.Q.H. Meng, Fast and robust data association using posterior based approximate joint compatibility test. IEEE Trans. Ind. Inf. 10(1), 331–339 (2014)CrossRefGoogle Scholar
  74. 74.
    Q. Huang, Z. You, S. Li, Z. Zhu, Using Chou’s amphiphilic pseudo-amino acid composition and extreme learning machine for prediction of protein-protein interactions, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2014), pp. 2952–2956Google Scholar
  75. 75.
    S. Li, Y. Li, Z. Wang, A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application. Neural Netw. 39, 27–39 (2013)zbMATHCrossRefGoogle Scholar
  76. 76.
    S. Li, B. Liu, Y. Li, Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 301–309 (2013)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Y. Cao, W. Ren, D.W. Casbeer, C. Schumacher, Finite-time connectivity-preserving consensus of networked nonlinear agents with unknown Lipschitz terms. IEEE Trans. Autom. Control 61(6), 1700–1705 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    T. Yang, D. Wu, Y. Sun, J. Lian, Minimum-time consensus-based approach for power system applications. IEEE Trans. Ind. Electron. 63(2), 1318–1328 (2016)CrossRefGoogle Scholar
  79. 79.
    S. Li, Y. Guo, Distributed consensus filter on directed switching graphs. Int. J. Robust Nonlinear Control 25(13), 2019–2040 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    L. Jin, S. Li, Distributed task allocation of multiple robots: a control perspective. IEEE Trans. Syst. Man Cybern. Syst. 48(5), 693–701 (2018)CrossRefGoogle Scholar
  81. 81.
    L. Jin, S. Li, H.M. La, X. Zhang, B. Hu, Dynamic task allocation in multi-robot coordination for moving target tracking: a distributed approach. Automatica 100, 75–81 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    L. Jin, S. Li, B. Hu, C. Yi, Dynamic neural networks aided distributed cooperative control of manipulators capable of different performance indices. Neurocomputing 291, 50–58 (2018)CrossRefGoogle Scholar
  83. 83.
    L. Jin, S. Li, L. Xiao, R. Lu, B. Liao, Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1715–1724 (2018)CrossRefGoogle Scholar
  84. 84.
    S. Li, M. Zhou, X. Luo, Z. You, Distributed winner-take-all in dynamic networks. IEEE Trans. Autom. Control 62(2), 577–589 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    S. Li, J. He, Y. Li, M.U. Rafique, Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 415–426 (2017)MathSciNetCrossRefGoogle Scholar
  86. 86.
    L. Jin, S. Li, X. Luo, M. Shang, Nonlinearly-activated noise-tolerant zeroing neural network for distributed motion planning of multiple robot arms, in Proceedings of the International Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2017), pp. 4165–4170Google Scholar
  87. 87.
    M.U. Khan, S. Li, Q. Wang, Z. Shao, Distributed multirobot formation and tracking control in cluttered environments. ACM Trans. Auton. Adapt. Syst. 11(2), 1–22 (2016)CrossRefGoogle Scholar
  88. 88.
    S. Li, Z. Wang, Y. Li, Using Laplacian eigenmap as heuristic information to solve nonlinear constraints defined on a graph and its application in distributed range-free localization of wireless sensor networks. Neural Process. Lett. 37(3), 411–424 (2013)CrossRefGoogle Scholar
  89. 89.
    W. Wang, J. Huang, C. Wen, H. Fan, Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 50(4), 1254–1263 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    W. Ren, N. Sorensen, Distributed coordination architecture for multi-robot formation control. Robot. Auton. Syst. 56(4), 324–333 (2008)zbMATHCrossRefGoogle Scholar
  91. 91.
    R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    L. Cheng, Z.-G. Hou, M. Tan, X. Wang, Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises. IEEE Trans. Autom. Control 56(8), 1958–1963 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    H. Rezaee, F. Abdollashi, Average consensus over high-order multiagent systems. IEEE Trans. Autom. Control 60(11), 3047–3052 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    W. Yu, G. Chen, M. Cao, Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. Regul. Pap. 57(1), 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  96. 96.
    W. Ren, K.L. Moore, Y. Chen, High-order and model reference consensus algorithms in cooperative control of multivehicle systems. J. Dyn. Sys. Meas. Control 129(5), 678–688 (2007)CrossRefGoogle Scholar
  97. 97.
    T. Yang, S. Roy, Y. Wan, A. Saberi, Constructing consensus controllers for networks with identical general linear agents. Int. J. Robust Nonlinear Control 21(11), 1237–1256 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    H. Wang, Consensus of networked mechanical systems with communication delays: a unified framework. IEEE Trans. Autom. Control 59(6), 1571–1576 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    P. Lin, W. Ren, Constrained consensus in unbalanced networks with communication delays. IEEE Trans. Autom. Control 59(3), 775–781 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    X. Wang, A. Saberi, A.A. Stoorvogel, H.F. Grip, T. Yang, Consensus in the network with uniform constant communication delay. Automatica 49(8), 2461–2467 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    S. Kar, J.M.F. Moura, Distributed consensus algorithms in sensor networks with imperfect communication: link failures and channel noise. IEEE Trans. Autom. Control 57(1), 355–369 (2009)MathSciNetzbMATHGoogle Scholar
  102. 102.
    H. Meng, Z. Chen, L. Zhu, R. Middleton, Consensus of a class of second-order nonlinear heterogeneous multi-agent systems with uncertainty and communication delay. Int. J. Robust Nonlinear Control 26(15), 3311–3329 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Y. Wang, L. Cheng, W. Ren, Z.-G. Hou, M. Tan, Seeking consensus in networks of linear agents: communication noises and Markovian switching topologies. IEEE Trans. Autom. Control 60(5), 1374–1379 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    X. Dong, B. Yu, Z. Shi, Y. Zhong, Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans. Control Syst. Technol 23(1), 340–348 (2015)CrossRefGoogle Scholar
  105. 105.
    V. Cichella, I. Kaminer, V. Dobrokhodov, E. Xargay, R. Choe, N. Hovakimyan, A.P. Aguiar, A.M. Pascoal, Cooperative path following of multiple multirotors over time-varying networks. IEEE Trans. Autom. Sci. Eng. 12(3), 945–957 (2015)CrossRefGoogle Scholar
  106. 106.
    A. Kasperskia, P. Zielinski, The robust shortest path problem in series-parallel multidigraphs with interval data. Oper. Res. Lett. 34(1), 69–76 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    K. Fujimura, H. Samet, A hierarchical strategy for pat planning among moving obstacles. IEEE Trans. Robot. Autom. 5(1), 61–69 (1989)CrossRefGoogle Scholar
  108. 108.
    D. Bertsimas, M. Sim, Robust discrete optimization and network flows. Math. Program. 98(1), 49–71 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    V. Yadav, M.V. Salapaka, Distributed protocol for determining when averaging consensus is reached, in Proceedings of the 45th Annual Allerton Conference on Communication, Control, and Computing (2007), pp. 715–720Google Scholar
  110. 110.
    S. Giannini, A. Petitti, D.D. Paola, A. Rizzo, Asynchronous max-consensus protocol with time delays: convergence results and applications. IEEE Trans. Circuits Syst. Regul. Pap. 63(2), 256–264 (2016)MathSciNetCrossRefGoogle Scholar
  111. 111.
    F. Iutzeler, P. Ciblat, J. Jakubowicz, Analysis of max-consensus algorithms in wireless channels. IEEE Trans. Signal Process. 60(11), 6103–6107 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    J. He, H. Li, J. Chen, P. Cheng, Study of consensus-based time synchronization in wireless sensor networks. ISA Trans. 53(2), 347–357 (2014)CrossRefGoogle Scholar
  113. 113.
    G.S. Seyboth, D.V. Dimarogonas, K.H. Johansson, Event-based broadcasting for multi-agent average consensus. Automatica 49(1), 245–252 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    T. Li, J.-F. Zhang, Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises. IEEE Trans. Autom. Control 55(9), 2043–2057 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    N.E. Manitara, C.N. Hadjicostis, Distributed stopping for average consensus in undirected graphs via event-triggered strategies. Automatica 70, 121–127 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    R. Olfati-Saber, R.M. Murray, Consensus protocols for networks of dynamic agents, in Proceedings of the American Control Conference (IEEE, Piscataway, 2003), pp. 951–956Google Scholar
  117. 117.
    W. Ren, R.W. Beard, E.M. Atkins, Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27(2), 71–82 (2007)CrossRefGoogle Scholar
  118. 118.
    F.H. Clarke, Optimization And Nonsmooth Analysis (Society for Industrial and Applied Mathematics, Philadelphia, 1990)zbMATHCrossRefGoogle Scholar
  119. 119.
    Z. Zuoa, D.W.C. Ho, Y. Wang, Reachable set bounding for delayed systems with polytopic uncertainties: the maximal Lyapunov–Krasovskii functional approach. Automatica 46(5), 949–952 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    T. Hu, A. R. Teel, L. Zaccarian, Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions. IEEE Trans. Autom. Control 51(11), 1770–1786 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    H.L. Royden, Real Analysis (Macmillan, New York, 1988)zbMATHGoogle Scholar
  122. 122.
    A. Isidori, Nonlinear Control Systems (Springer, New York, 2013)zbMATHGoogle Scholar
  123. 123.
    R. Bellman, On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)zbMATHCrossRefGoogle Scholar
  124. 124.
    C.-H. Kuo, H.-C. Chou, S.-Y. Tasi, Pneumatic sensor: a complete coverage improvement approach for robotic cleaners. IEEE Trans. Instrum. Meas. 60(4), 1237–1256 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yinyan Zhang
    • 1
  • Shuai Li
    • 2
  1. 1.College of Cyber SecurityJinan UniversityGuangzhouChina
  2. 2.School of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations