A Method to Rationalize the Product Portfolio in Retail Stores

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 643)


Retail store operations face a variety of challenges and complexities. Determining the best assortment is the main problem in the retail store. This re-search presents a practical methodology for the analysis of products in the assortment with the goal of reducing the excess items and improve sales and profit margin of a retail store without affecting customer satisfaction. The methodology integrates 6 steps that allow to optimize products of a portfolio in categories, sub categories and segments, through Pareto analysis and clustering analysis using the BCG matrix. The methodology was applied in an independent supermarket. The results in the case of the application for non-perishable products, allowed to identify a set of different products (n = 152), of which they were prioritized in a subcategory (oils) in which 90 products were prioritized. In the example, it shows how 21 products have significant results in the variety of products. The combination of the global and local category of the product, the net profit, the inventory rotation and the participation of the growth provides a multifactorial analysis in the decision-making to supply with products a retail store seeking to increase the level of service and maximizing profits.


Rationalization Portfolio optimization Clustering analysis Retail 


  1. 1.
    Campo K, Gijsbrechts E, Nisol P (2004) Dynamics in consumer response to product unavailability: do stock-out reactions signal response to permanent assortment reductions? J Bus Res 57(8):834–843CrossRefGoogle Scholar
  2. 2.
    Sloot LM, Fok D, Verhoef PC (2006) The short-and long-term impact of an assortment reduction on category sales. J Mark Res 43(4):536–548CrossRefGoogle Scholar
  3. 3.
    Beneke J, Cumming A, Jolly L (2013) The effect of item reduction on assortment satisfaction—a consideration of the category of red wine in a controlled retail setting. J Retail Consum Serv 20(3):282–291CrossRefGoogle Scholar
  4. 4.
    EFMI and CBL (2005) ConsumentenTrends 2005. Rotterdam and Leidschendam: EFMI and CBLGoogle Scholar
  5. 5.
    Zinn W, Liu PC (2001) Consumer response to retail stockouts. J Bus Logist 22(1):49–71CrossRefGoogle Scholar
  6. 6.
    Valero-Herrero M, García-Sabater JP, Hernández JRC, Maheut J (2011) Planteamiento dinámico del problema de secuenciación en líneas de montaje con mezcla de modelos. In: V international conference on industrial engineering and industrial management, pp 288–296Google Scholar
  7. 7.
    Coronado-Hernández JR (2016) Análisis del efecto de algunos factores de complejidad e incertidumbre en el rendimiento de las Cadenas de Suministro. Propuesta de una herramienta de valoración basada en simulación. Universitat Politècnica de València, Valencia (Spain).
  8. 8.
    Garvis M (2010) SKU rationalization: determining the proper depth & breadth of an assortment.
  9. 9.
    Downs B, Metters R, Semple J (2001) Managing inventory with multiple products, lags in delivery, resource constraints, and lost sales: A mathematical programming approach. Manage Sci 47(3):464–479CrossRefGoogle Scholar
  10. 10.
    Irion J, Lu J-C, Al-Khayyal F, Tsao Y-C (2012) A piecewise linearization framework for retail shelf space management models. Eur J Oper Res 222(1):122–136MathSciNetCrossRefGoogle Scholar
  11. 11.
    Van Herpen E, Pieters R (2002) The variety of an assortment: an extension to the attribute-based approach. Mark Sci 21(3):331–341CrossRefGoogle Scholar
  12. 12.
    Gruen TW, Corsten DS, Bharadwaj S (2002) Retail out-of-stocks: a worldwide examination of extent, causes and consumer responses. Grocery Manufacturers of America, Washington, DCGoogle Scholar
  13. 13.
    Cachon GP, Terwiesch C, Xu Y (2005) Retail assortment planning in the presence of consumer search. Manuf Serv Oper Manag 7(4):330–346CrossRefGoogle Scholar
  14. 14.
    Kök AG, Fisher ML (2007) Demand estimation and assortment optimization under substitution: methodology and application. Oper Res 55(6):1001–1021MathSciNetCrossRefGoogle Scholar
  15. 15.
    Anderson SP, De Palma A, Thisse JF (1992) Discrete choice theory of product differentiation. MIT press, CambridgeGoogle Scholar
  16. 16.
    Christopher M, Towill D (2001) An integrated model for the design of agile supply chains. Int J Phys Distrib Logist Manag 31(4):235–246CrossRefGoogle Scholar
  17. 17.
    Rius-Sorolla G, Maheut J, Coronado-Hernandez JR, Garcia-Sabater JP (2020) Lagrangian relaxation of the generic materials and operations planning model. Cent Eur J Oper Res 28(1):105–123MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mattila H, King R, Ojala N (2002) Retail performance measures for seasonal fashion. J Fash Mark ManagGoogle Scholar
  19. 19.
    Amelec V (2015) Validation of strategies to reduce exhausted shelf products in a pharmaceutical chain. Adv Sci Lett 21(5):1403–1405CrossRefGoogle Scholar
  20. 20.
    Amelec V (2015) Methodology to increase the adaptability and flexibility of the supply chain of automotive company through lean manufacturing. Adv Sci Lett 21(5):1517–1520CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Universidad de la CostaBarranquillaColombia
  2. 2.Universidad Tecnológica de BolívarCartagenaColombia
  3. 3.Escuela Naval de Cadetes “Almirante Padilla”CartagenaColombia
  4. 4.Universidad Peruana de Ciencias AplicadasLimaPeru

Personalised recommendations