Advertisement

Coding and Evolution of Pheromone Preference in Moths

  • Teun Dekker
  • Zsolt KárpátiEmail author
Chapter
Part of the Entomology Monographs book series (ENTMON)

Abstract

Olfaction is of overriding importance in defining the ecological niche of most insect species. Understanding the inner workings of olfaction can thus provide new ways for sustainable control of pests. However, getting at the neurogenetic blueprint of ‘attraction’ has been a slow process, owing to the immensely diverse odor environments and the ditto multidimensional complexity of the sense that ‘navigates’ in these. Pheromone preference coding in male moths offers several important advantages here: an often-binary signal, mirrored by a ‘simple’ peripheral detection system, a strongly enlarged brain center devoted to its processing, and fast and robust behaviors. Additionally, to avoid mating with heterospecific females, preference is often disjunct between closely related species, offering a perfect platform for comparative and evolutionary studies on preference codes. Here we mine through the moth pheromone research database to surface correlates of pheromone preference in male moths, from peripheral detection by olfactory receptors and sensory neurons, to their processing in the antennal lobes, and discuss the significance in the context of general odor preference, evolution, and application.

Keywords

Odor coding Pheromone preference Evolution 

References

  1. Albre J, Liénard MA, Sirey TM, Schmidt S, Tooman LK et al (2012) Sex pheromone evolution is associated with differential regulation of the same desaturase gene in to genera of leafroller moths. PLoS Genet 8:e1002489.  https://doi.org/10.1371/journal.pgen.1002489CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allison JD, Cardé RT (2016a) Pheromones: reproductive isolation and evolution in moths. In: Pheromone communication in moths: evolution, behavior, and application. University of California Press, Oakland, pp 11–23Google Scholar
  3. Allison JD, Cardé RT (2016b) Pheromone communication in moths: evolution, behavior, and application. University of California Press, OaklandGoogle Scholar
  4. Allison JD, Cardé RT (2016c) Variation in moth pheromones. In: Pheromone communication in moths: evolution, behavior, and application. University of California Press, OaklandGoogle Scholar
  5. Ando T, Inomata SI, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Springer, Berlin/Heidelberg, pp 51–96CrossRefGoogle Scholar
  6. Ansebo L, Ignell R, Löfqvist J, Hansson BS (2005) Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). J Insect Physiol 51:1066–1074.  https://doi.org/10.1016/j.jinsphys.2005.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baker TC, Ochieng SA, Cossé AA, Lee SG, Todd JL, Quero C, Vickers NJ (2004) A comparison of responses from olfactory receptor neurons of Heliothis subflexa and Heliothis virescens to components of their sex pheromone. J Comp Physiol A 190:155.  https://doi.org/10.1007/s00359-003-0483-2CrossRefGoogle Scholar
  8. Barish S, Nuss S, Strunilin I, Bao S, Mukherjee S, Jones CD, Volkan PC (2018) Combinations of DIPs and Dprs control organization of olfactory receptor neuron terminals in Drosophila. PLoS Genet 14:e1007560.  https://doi.org/10.1371/journal.pgen.1007560CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barrozo R, Dekker T (2015) Contextual modulation of moth pheromone perception by plant odors. In: Allison JD, Cardé RT (eds) Pheromone communication in moths. University of California Press, Berkely, pp 101–112Google Scholar
  10. Bastin-Héline L, Fouchier A, Cao S, Koutroumpa F, Caballero-Vidal G, Robakiewicz S, Monsempes C, François M-C, Ribeyre T, Cian A, Walker WB, Wang G, Jacquin-Joly E, Montagné N (2019) A novel lineage of candidate pheromone receptors for sex communication in moths. eLife 8.  https://doi.org/10.1101/707174
  11. Benton R (2007) Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci 30:512–519.  https://doi.org/10.1016/j.tins.2007.07.004CrossRefPubMedGoogle Scholar
  12. Berg BG, Almaas TJ, Bjaalie JG, Mustaparta H (1998) The macroglomerular complex of the antennal lobe in the tobacco budworm moth Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J Comp Physiol A 183:669–682CrossRefGoogle Scholar
  13. Berg BG, Zhao X-C, Wang G (2014) Processing of pheromone information in related species of heliothine moth. Insects 5:742–761.  https://doi.org/10.3390/insects5040742CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bette S, Breer H, Krieger J (2002) Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem Mol Biol 32:241–246PubMedCrossRefGoogle Scholar
  15. Böröczky K, Wada-Katsumata A, Batchelor D, Zhukovskaya M, Schal C (2013) Insects groom their antennae to enhance olfactory acuity. Proc Natl Acad Sci U S A 110:3615–3620.  https://doi.org/10.1073/pnas.1212466110CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bretschneider F (1924) Über die Gehirne des eichenspinners und des Seidenspinners (Lasiocampa quercus L. und Bombyx mori L.). Jena. Z Naturw 60:563–570Google Scholar
  17. Carde RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585.  https://doi.org/10.1146/annurev.en.40.010195.003015CrossRefGoogle Scholar
  18. Chang H, Liu Y, Yang T, Pelosi P, Dong S, Wang G (2015) Pheromone binding proteins enhance the sensitivity of olfactory receptors to sex pheromones in Chilo suppressalis. Sci Rep 5:13093.  https://doi.org/10.1038/srep13093CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen X-L, Su L, Li B-L, Li G-W, Wu J-X (2018a) Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide). Arch Insect Biochem Physiol 9:e2145698.  https://doi.org/10.1002/arch.21456CrossRefGoogle Scholar
  20. Chen X-L, Li G-W, Xu X-L, Wu J-X (2018b) Molecular and functional characterization of odorant binding protein 7 from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front Physiol 9:1762.  https://doi.org/10.3389/fphys.2018.01762CrossRefPubMedPubMedCentralGoogle Scholar
  21. Christensen TA, Waldrop BR, Haroow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173:385–399PubMedCrossRefGoogle Scholar
  22. Cork A (2016) Pheromones as management tools mass trapping and lure-and-kill. In: Allison JD, Cardé RT (eds) Pheromone communication in moths. University of California Press, BerkelyGoogle Scholar
  23. Cossé A, Todd J, Baker TJ (1998) Neurons discovered in male Helicoverpa zea antennae that correlate with pheromone-mediated attraction and interspecific antagonism. Comp Physiol A 182:585.  https://doi.org/10.1007/s003590050205CrossRefGoogle Scholar
  24. Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P (2011) Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 36:335–344.  https://doi.org/10.1093/chemse/bjq137CrossRefPubMedGoogle Scholar
  25. Dekker T, Ibba I, Siju KP, Stensmyr MC, Hansson BS (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16:101–109PubMedCrossRefGoogle Scholar
  26. Dekker T, Revadi S, Mansourian S et al (2015) Loss of Drosophila pheromone reverses its role in sexual communication in Drosophila suzukii. Proc Biol Sci 282:20143018.  https://doi.org/10.1098/rspb.2014.3018CrossRefPubMedPubMedCentralGoogle Scholar
  27. Den Otter CJ, Thomas G (1979) Olfactory preference in insects: a synthesis of behaviour and electrophysiology. In: Kroeze GHA (ed) Preference behaviour and chemoreception. Information Retrieval Limited, London, pp 171–182Google Scholar
  28. Domingue MJ, Musto CJ, Linn CE, Roelofs WL, Baker TC (2007a) Altered olfactory receptor neuron responsiveness in rare Ostrinia nubilalis males attracted to the O. furnacalis pheromone blend. J Insect Physiol 53:1063–1071.  https://doi.org/10.1016/j.jinsphys.2007.05.013CrossRefPubMedGoogle Scholar
  29. Domingue MJ, Musto CJ, Linn CE, Roelofs WL, Baker TC (2007b) Evidence of olfactory antagonistic imposition as a facilitator of evolutionary shifts in pheromone blend usage in Ostrinia spp. (Lepidoptera: Crambidae). J Insect Physiol 53:488–496.  https://doi.org/10.1016/j.jinsphys.2007.05.013CrossRefPubMedGoogle Scholar
  30. Domingue MJ, Haynes KF, Todd JL, Baker TC (2009) Altered olfactory receptor neuron responsiveness is correlated with a shift in behavioral response in an evolved colony of the cabbage looper loth, Trichoplusia ni. J Chem Ecol 35:405.  https://doi.org/10.1007/s10886-009-9621-9CrossRefPubMedPubMedCentralGoogle Scholar
  31. Evenden M (2016) Mating disruption of moth pests in integrated pest management a mechanistic approach. In: Allison JD, Cardé RT (eds) Pheromone communication in moths. University of California Press, BerkelyGoogle Scholar
  32. Forstner M, Breer H, Krieger J (2009) A receptor and binding protein interplay in the detection of a distinct pheromone component in the silkmoth Antheraea polyphemus. Int J Biol Sci 5:745–757.  https://doi.org/10.7150/ijbs.5.745CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fujii T, Fujii T, Namiki S, Abe H, Sakurai T, Ohnuma A, Kanzaki R, Katsuma S, Ishikawa Y, Shimada T (2011) Sex-linked transcription factor involved in a shift of sex-pheromone preference in the silkmoth Bombyx mori. Proc Natl Acad Sci U S A 108:18038–18043PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gomez-Diaz C, Reina JH, Cambillau C, Benton R (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biol 11:e1001546.  https://doi.org/10.1371/journal.pbio.1001546CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gregg PC, Del Socorro AP, Landolt PJ (2018) Advances in attract-and-kill for agricultural pests: beyond pheromones. Annu Rev Entomol 63:453–470.  https://doi.org/10.1146/annurev-ento-031616-035040CrossRefPubMedPubMedCentralGoogle Scholar
  36. Groot AT, Marr M, Schöfl G, Lorenz S, Svatos A, Heckel DG (2008) Host strain specific sex pheromone variation in Spodoptera frugiperda. Front Zool 5:20.  https://doi.org/10.1186/1742-9994-5-20CrossRefPubMedPubMedCentralGoogle Scholar
  37. Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31:547–555.  https://doi.org/10.1093/chemse/bjj059CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gu S-H, Zhou J-J, Wang G-R, Zhang Y-J, Guo Y-Y (2013) Sex pheromone recognition and immunolocalization of three pheromone binding proteins in the black cutworm moth Agrotis ipsilon. Insect Biochem Mol Biol 43:237e251.  https://doi.org/10.1016/j.ibmb.2012.12.009CrossRefGoogle Scholar
  39. Guo H, Smith DP (2017) Odorant receptor desensitization in insects. J Exp Neurosci 11:1179069517748600.  https://doi.org/10.1177/1179069517748600CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hansson BS, Löfstedt C, Roelofs WL (1987) Inheritance of olfactory response to sex pheromone components in Ostrinia nubilalis. Naturwissenschaften 74:497.  https://doi.org/10.1007/BF00447935CrossRefGoogle Scholar
  41. Hansson BS, Ljunberg H, Hallberg E, Löfstedt C (1992) Functional specialization of olfactory glomeruli in a moth. Science 256:1313–1315PubMedCrossRefPubMedCentralGoogle Scholar
  42. He P, Zhang J, Li Z-Q, Zhang Y-N, Yang K, Dong S-L (2014) Functional characterization of an antennal esterase from the noctuid moth, Spodoptera exigua. Arch Insect Biochem Physiol 86:85–99.  https://doi.org/10.1002/arch.21164CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hendrikse A, Vos-Buennemeyer E (1987) Role of host-plant stimuli in sexual behaviour of small ermine moths (Yponomeuta). Ecol Entomol 12:363–371CrossRefGoogle Scholar
  44. Hillier NK, Baker TC (2016) Pheromones of heliothine moths. In: Allison JD, Cardé RT (eds) Pheromone communication in moths. University of California Press, BerkelyGoogle Scholar
  45. Ibba I, Angioy AM, Hansson BS, Dekker T (2010) Macroglomeruli for fruit odors change blend preference in Drosophila. Naturwissenschaften 97:1059–1066.  https://doi.org/10.1007/s00114-010-0727-2CrossRefGoogle Scholar
  46. Ignell R, Root CM, Birse RT, Wang JW, Nassel DR, Winther AME (2009) Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proc Natl Acad Sci U S A 106:13070–13075PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci U S A 102:14075–14079PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jacquin-Joly E, Vogt RG, François M-C, Meillour PN (2001) Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem Senses 26:833–844.  https://doi.org/10.1093/chemse/26.7.833CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jafari S, Alkhori L, Schleiffer A, Brochtrup A, Hummel T et al (2012) Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol 10:e1001280.  https://doi.org/10.1371/journal.pbio.1001280CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jin X, Ha TS, Smith DP (2008) SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A 105:10996–11001PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jurenka R (2004) Insect pheromone biosynthesis. In: Schulz S, 239 (eds) Chemistry of pheromones and other semiochemicals I. Springer, Berlin, pp 97–131CrossRefGoogle Scholar
  52. Kanaujia S, Kaissling K-E (1985) Interactions of pheromone with moth antennae: adsorption, desorption and transport. J Insect Physiol 31:71–81.  https://doi.org/10.1016/0022-1910(85)90044-7CrossRefGoogle Scholar
  53. Kárpáti Z, Dekker T, Hansson BS (2008) Reversed functional topology in the antennal lobe of the male European corn borer. J Exp Biol 211:2841–2848.  https://doi.org/10.1242/jeb.017319CrossRefPubMedGoogle Scholar
  54. Kárpáti Z, Olsson SB, Hansson BS, Dekker T (2010) Inheritance of central neuroanatomy and physiology related to pheromone preference in the male European corn borer. BMC Evol Biol 10:1–12CrossRefGoogle Scholar
  55. Kárpáti Z, Tasin M, Cardé RT, Dekker T (2013) Early quality assessment lessens pheromone specificity in a moth. Proc Natl Acad Sci U S A 110:7377–7382.  https://doi.org/10.1073/pnas.1216145110CrossRefPubMedPubMedCentralGoogle Scholar
  56. Knight A, Haworth J, Lingren B, Hebert V (2010) Combining pear ester with codlemone improves management of codling moth. IOBC/wprs Bull 2010:345–348Google Scholar
  57. Koontz MA, Schneider D (1987) Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar). Cell Tissue Res 249:39–50.  https://doi.org/10.1007/BF00215416CrossRefGoogle Scholar
  58. Koutroumpa FA, Kárpáti Z, Monsempes C, Hill SR, Hansson BS, Jacquin-Joly E, Krieger J, Dekker T (2014) Shifts in sensory neuron identity parallel differences in pheromone preference in the European corn borer. Front Ecol Evol 2:65.  https://doi.org/10.3389/fevo.2014.00065CrossRefGoogle Scholar
  59. Koutroumpa FA, Monsempes C, François M-C, Cian A, Royer C, Concordet J-P, Jacquin-Joly E (2016) Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 6:29620PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kunesch G, Zagatti P, Lallemand JY, Debal A, Vigneron JP (1981) Structure and synthesis of the wing gland pheromone of the male african sugar-cane borer: Eldana saccharida (wlk.) (Lepidoptera, pyralidae). Tetrahedron Lett 22:5270–5274.  https://doi.org/10.1016/S0040-4039(01)92478-5CrossRefGoogle Scholar
  61. Kutinkova H, Subchev M, Light DM (2005) Interactive effects of ethyl (E,Z)-2, 4-decadienoate and sex pheromone lures to codling moth: apple orchard investigations in Bulgaria. J Plant Protect Res 45:49–52Google Scholar
  62. Landolt PJ, Heath RR (1989) Attraction of female cabbage looper moths (Lepidoptera: Noctuidae) to male-produced sex pheromone. Ann Entomol Soc Am 82:520–525.  https://doi.org/10.1093/aesa/82.4.520CrossRefGoogle Scholar
  63. Leary GP, Allena JE, Bungera PL, Luginbill JB, Linn CL, Macallisterd IE (2012) Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A 109:14081–14086PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lee SG, Poole K, Linn CE Jr, Vickers NJ (2016) Transplant antennae and host brain interact to shape odor perceptual space in male moths. PLoS One 11:e0147906.  https://doi.org/10.1371/journal.pone.0147906CrossRefPubMedPubMedCentralGoogle Scholar
  65. Lee S-G, Vickers NJ, Baker TC (2006a) Glomerular targets of Heliothis subflexa male olfactory receptor neurons housed within long trichoid sensilla. Chem Senses 31(9):821–834.  https://doi.org/10.1093/chemse/bjl025CrossRefPubMedPubMedCentralGoogle Scholar
  66. Lee S-G, Carlsson MA, Hansson BS, Todd JL, Baker TC (2006b) Antennal lobe projection destinations of Helicoverpa zea male olfactory receptor neurons responsive to heliothine sex pheromone components. J Comp Physiol A 192:351.  https://doi.org/10.1007/s00359-005-0071-8CrossRefGoogle Scholar
  67. Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC (2013) Combinatorial rules of precursor specification underlying olfactory neuron diversity. Curr Biol 23:2481–2490PubMedPubMedCentralCrossRefGoogle Scholar
  68. Li Z, Ni JD, Huang J, Montell C (2014) Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet 10:e1004600.  https://doi.org/10.1371/journal.pgen.1004600CrossRefPubMedPubMedCentralGoogle Scholar
  69. Liénard MA, Löfstedt C (2016) In: Allison JD, Cardé RT (eds) Small ermine moths: role of pheromones in reproductive isolation and speciation. University of California Press, Berkely, pp 211–224Google Scholar
  70. Light DM, Knight AL (2005) Specificity of codling moth (Lepidoptera: Tortricidae) for the host plant kairomone, ethyl (E, Z)-2,4-decadienoate: field bioassays with pome fruit volatiles, analogue, and isomeric compounds. J Agric Food Chem 53:4046–4053PubMedCrossRefPubMedCentralGoogle Scholar
  71. Linn C Jr, Poole K, Zhang A, Roelofs W (1999) Pheromone-blend discrimination by European corn borer moths with inter-race and inter-sex antennal transplants. J Comp Physiol A 184:273.  https://doi.org/10.1007/s003590050325CrossRefGoogle Scholar
  72. Linn C Jr, O’Connor M, Roelofs W (2003) Silent genes and rare males: a fresh look at pheromone blend response specificity in the European corn borer moth, Ostrinia nubilalis. J Insect Sci 3(15):1CrossRefGoogle Scholar
  73. Linn C Jr, Musto CJ, Roelofs WL (2007) More rare males in ostrinia: response of Asian corn borer moths to the sex pheromone of the European corn borer. J Chem Ecol 33:99.  https://doi.org/10.1007/s10886-006-9204-yCrossRefGoogle Scholar
  74. Linz J, Baschwitz A, Strutz A, Dweck HK, Sachse S, Hansson BS et al (2013) Host plant-driven sensory specialization in Drosophila erecta. Proc R Soc B 280:20130626PubMedCrossRefPubMedCentralGoogle Scholar
  75. Liu YB, Haynes KFJ (1994) Evolution of behavioral responses to sex pheromone in mutant laboratory colonies of Trichoplusia ni. Chem Ecol 20:231.  https://doi.org/10.1007/BF02064433CrossRefGoogle Scholar
  76. Löfstedt C (1993) Moth pheromone genetics and evolution. Philos Trans R Soc Lond B 340:167–177.  https://doi.org/10.1098/rstb.1993.0055CrossRefGoogle Scholar
  77. Löfstedt C, Löfqvist J, Lanne BS, Van Der Pers JNC, Hansson BS (1986) Pheromone dialects in European turnip moths Agrotis segetum. Oikos 46(2):250–257.  https://doi.org/10.2307/3565474. https://www.jstor.org/stable/3565474CrossRefGoogle Scholar
  78. Löfstedt C, Wahlberg N, Millar JG (2016) Evolutionary patterns of pheromone diversity in lepidoptera. In: Allison JD, Cardé RT (eds) Pheromone communication in moths. University of California Press, BerkelyGoogle Scholar
  79. Maïbèche-Coisne M, Jacquin-Joly E, Francois MC, Meillour PN (2002) cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol Biol 11:273–281PubMedCrossRefPubMedCentralGoogle Scholar
  80. Maida R, Ziegelberger G, Kaissling KE (2003) Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B 173:565–573PubMedCrossRefPubMedCentralGoogle Scholar
  81. Maitani MM, Allara DL, Park KC, Lee SG, Baker TC (2010) Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties. Arthropod Struct Dev 39:1–16.  https://doi.org/10.1016/j.asd.2009.08.004CrossRefPubMedPubMedCentralGoogle Scholar
  82. Merlin C, Rosell G, Carot-Sans G, Francois MC, Bozzolan F, Pelletier J, Jacquin-Joly E, Guerrero A, Maïbèche-Coisne M (2007) Antennal esterase cDNAs from two pest moths, Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odorant degradation. Insect Mol Biol 16:73–81PubMedCrossRefGoogle Scholar
  83. Mohl C, Breer H, Krieger J (2002) Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invertebr Neurosci 4:165–174CrossRefGoogle Scholar
  84. Ochieng SA, Anderson P, Hansson BS (1995) Antennal lobe projection patterns of olfactory receptor neurons involved in sex pheromone detection in Spodoptera littoralis (Lepidoptera: Noctuidae). Tissue Cell 27:221–232PubMedCrossRefGoogle Scholar
  85. Ochieng S, Poole K, Linn C, Vickers N, Roelofs W, Baker T (2003) Unusual pheromone receptor neuron responses in heliothine moth antennae derived from inter-species imaginal disc transplantation. J Comp Physiol A 189:19.  https://doi.org/10.1007/s00359-002-0371-1CrossRefGoogle Scholar
  86. Olsen SR, Wilson RI (2008) Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452:956–960PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pelosi P, Iovinella I, Felicioli A, Dani FR (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5:320Google Scholar
  88. Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR (2017) Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev 93:184–200.  https://doi.org/10.1111/brv.12339CrossRefPubMedPubMedCentralGoogle Scholar
  89. Pregitzer P, Greschista M, Breer H, Krieger J (2014) The sensory neuron membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol Biol 23:733–742.  https://doi.org/10.1111/imb.12119CrossRefPubMedPubMedCentralGoogle Scholar
  90. Rafaeli A, Jurenka R (2003) PBAN regulation of pheromone biosynthesis in female moths. In: Blomquist GJ, Vogt R (eds) Pheromone biochemistry and molecular biology. Elsevier, London, pp 107–136CrossRefGoogle Scholar
  91. Rafaeli A, Bober R, Becker L, Choi MY, Fuers EJ, Jurenka R (2007) Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol Biol 16:287–293PubMedCrossRefGoogle Scholar
  92. Roelofs WL, Glover TJ, Tang X-H, Robbins PS, Löfstedt C, Hansson BS, Bengtsson BO, Sreng I, Eckenrode CJ (1987) Sex pheromone production and perception in European corn borer moths is determined by both autosomal and sex-linked genes. Proc Natl Acad Sci U S A 84:7585–7589PubMedPubMedCentralCrossRefGoogle Scholar
  93. Saveer AM, Kromann SH, Birgersson G, Bengtsson M, Lindblom T, Balkenius A, Hansson BS, Witzgall P, Becher PG, Ignell R (2012) Floral to green: mating switches moth olfactory coding and preference. Proc Biol Soc 279(1737):2314–2322.  https://doi.org/10.1098/rspb.2011.2710CrossRefGoogle Scholar
  94. Su C-Y, Menuz K, Carlson JR (2009) Olfactory perception: receptors, cells, and circuits. Cell 139:45–59.  https://doi.org/10.1016/j.cell.2009.09.015CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sun XJ, Fonta C, Masson C (1993) Odour quality processing by bee antennal lobe interneurons. Chem Senses 18:355–377CrossRefGoogle Scholar
  96. Sun JS, Xiao S, Carlson JR (2018) The diverse small proteins called odorant-binding proteins. Open Biol 8:180208.  https://doi.org/10.1098/rsob.180208CrossRefPubMedPubMedCentralGoogle Scholar
  97. Syed Z, Kopp A, Kimbrell DA, Leal WS (2010) Bombykol receptors in the silkworm moth and the fruit fly. Proc Natl Acad Sci U S A 107:9436–9439.  https://doi.org/10.1073/pnas.1003881107CrossRefPubMedPubMedCentralGoogle Scholar
  98. Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones – an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol 29:481–514PubMedCrossRefGoogle Scholar
  99. Trona F, Anfora G, Balkenius A, Bengtsson M, Tasin M, Knight A, Janz N, Witzgall P, Ignell R (2013) Neural coding merges sex and habitat chemosensory signals in an insect herbivore. Proc R Soc B 280:2013–0267CrossRefGoogle Scholar
  100. Van der Pers JNC, Den Otter CJ (1978) Single cell responses from olfactory receptors of small ermine moths to sex-attractants. J Insect Physiol 24:337–343Google Scholar
  101. Vickers NJ, Christensen TA, Baker TC, Hildebrand JG (2001) Odour-plume dynamics influence the brain’s olfactory code. Nature 410:466–470PubMedCrossRefGoogle Scholar
  102. Vickers NJ, Poole K, Linn CE Jr (2005) Plasticity in central olfactory processing and pheromone blend discrimination following interspecies antennal imaginal disc transplantation. J Comp Neurol 491:141–156.  https://doi.org/10.1002/cne.20725CrossRefPubMedPubMedCentralGoogle Scholar
  103. Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci U S A 82:8827–8831PubMedPubMedCentralCrossRefGoogle Scholar
  104. Von Arx M, Schmidt-Büsser D, Guerin PM (2012) Plant volatiles enhance behavioral responses of grapevine moth males, Lobesia botrana to sex pheromone. J Chem Ecol 38:222–225CrossRefGoogle Scholar
  105. Wicher D (2018) Tuning insect odorant receptors. Front Cell Neurosci 12:94.  https://doi.org/10.3389/fncel.2018.00094CrossRefPubMedPubMedCentralGoogle Scholar
  106. Wu W, Cottrell CB, Hansson BS, Löfstedt C (1999) Comparative study of pheromone production and response in Swedish and Zimbabwean populations of turnip moth, Agrotis segetum. J Chem Ecol 25:177.  https://doi.org/10.1023/A:1020849419193CrossRefGoogle Scholar
  107. Wu H, Hou C, Huang L-Q, Yan F-S, Wang C-Z (2013) Peripheral coding of sex pheromone blends with reverse ratios in two Helicoverpa species. PLoS One 8:e70078.  https://doi.org/10.1371/journal.pone.0070078CrossRefPubMedPubMedCentralGoogle Scholar
  108. Younas A, Waris MI, Qamar MT, Shaaban M, Prager SM, Wang M-Q (2018) Functional analysis of the chemosensory protein MsepCSP8 from the oriental armyworm Mythimna separata. Front Physiol 9:872.  https://doi.org/10.3389/fphys.2018.00872CrossRefPubMedPubMedCentralGoogle Scholar
  109. Zagatti P (1981) Comportement sexuel de la Pyrale de la Canne a sucre Eldana saccharina (Wlk.) lie a deux pheromones emises par le male. Behaviour 78:81–98CrossRefGoogle Scholar
  110. Zagatti P, Kunesch G, Ramiandrasoa IF, Malosse C, Hall DR, Lester R, Nesbitt BF (1987) Sex pheromonesof rice moth, Corcyra cephalonica Stainton I. Identification of male pheromone. J Chem Ecol 13:1561–1573.  https://doi.org/10.1007/BF00980200CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zhang D-D, Löfstedt C (2013) Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum. PLoS One 8:e77345.  https://doi.org/10.1371/journal.pone.0077345CrossRefPubMedPubMedCentralGoogle Scholar
  112. Zhang D-D, Löfstedt C (2015) Moth pheromone receptors: gene sequences, function, and evolution. Front Ecol Evol.  https://doi.org/10.3389/fevo.2015.00105
  113. Zhu J, Iovinella I, Dani FR, Liu Y-L, Huang L-Q, Liu Y, Wang C-Z, Pelosi P, Wang G (2016) Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera. Int J Biol Sci 12:1394–1404.  https://doi.org/10.7150/ijbs.16517CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Swedish University of Agricultural SciencesUppsalaSweden
  2. 2.CAR HAS Plant Protection InstituteBudapestHungary

Personalised recommendations