Advertisement

Biosensors and Nanobiosensors in Environmental Applications

  • Mojtaba Salouti
  • Fateme Khadivi Derakhshan
Chapter
  • 52 Downloads

Abstract

There is a big demand for fast, reliable, and low-cost systems for the detection, monitoring, and diagnosis of pollutant in the environment and agriculture. Quantitative analysis of environmental samples is usually carried out using traditional analytical methods such as chromatographic and spectroscopic techniques to identify various environmental contaminants. These methods, although accurate and sensitive, require sophisticated and expensive instrumentation, expert personnel for their operation, and multistep and complicated sample preparation. These techniques are also labor-intensive and time-consuming, and it is hard to monitor contaminants on site, in real time, and at high frequency. To overcome the issues associated with current diagnostic techniques, a wide range of new biosensors (an analytical device for the quantitative detection of analyte with a biologically active element) are being developed. Several of these biosensors rely on nanotechnological platforms. Hence, in this chapter, an emphasis has been given on the deployment of nanobiosensor in detection of pollutant in the environment.

Keywords

Environmental pollution Detection Biosensors Nanobiosensors 

References

  1. Abdul Rahman N, Yusof N, Amirah Mohd Maamor N, Mariam Mohd Noor S (2012) Development of electrochemical sensor for simultaneous determination of Cd(II) and Hg(II) Ion by exploiting newly synthesized cyclic dipeptide. Int J Electrochem Sci 7:186–196Google Scholar
  2. Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28:214–242CrossRefGoogle Scholar
  3. Aisyah WN, Jusoh W, Wong LS (2014) Exploring the potential of whole cell biosensor: a review in environmental applications. Int Sci Acad Eng Technol 21:52–56Google Scholar
  4. Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P (2018) Gold nanoparticle-based colorimetric biosensors. Nanoscale 10:18–33CrossRefGoogle Scholar
  5. Ali MA, Jiang H, Mahal NK, Weber RJ, Kumar R, Castellano MJ, Dong L (2017) Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sensors Actuators B Chem 239:1289–1299CrossRefGoogle Scholar
  6. Alpat SK, Alpat Ş, Kutlu B, Özbayrak Ö, Büyükışık HB (2007) Development of biosorption-based algal biosensor for Cu(II) using Tetraselmis chui. Sensors Actuators B Chem 128:273–278CrossRefGoogle Scholar
  7. Álvarez SP, López NEL, Lozano JM, Negrete EAR, Cervantes MES (2016) Plant fungal disease management using nanobiotechnology as a tool. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 169–192CrossRefGoogle Scholar
  8. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423CrossRefPubMedPubMedCentralGoogle Scholar
  9. Amini B, Kamali M, Salouti M, Yaghmaei P (2017) Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence. Biosens Bioelectron 92:679–686CrossRefPubMedPubMedCentralGoogle Scholar
  10. Amini B, Kamali M, Salouti M, Yaghmaei P (2018) Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme. Spectrochim Acta A Mol Biomol Spectrosc 199:421–429CrossRefPubMedPubMedCentralGoogle Scholar
  11. Andrea Medeiros Salgado, Silva LM, Melo AF (2011) Biosensor for environmental applications. In: Somerset V (ed) Environmental biosensors. IntechOpen, Rijeka, pp 3–16Google Scholar
  12. Andreescu S, Magearu V, Lougarre A, Fournier D, Marty J-L (2001) Immobilization of enzymes on screen-printed sensors via an histidine tail. application to the detection of pesticides using modified cholinesterase. Anal Lett 34:529–540CrossRefGoogle Scholar
  13. Antonacci A, Arduini F, Moscone D, Palleschi G, Scognamiglio V (2018) Nanostructured (Bio)sensors for smart agriculture. TrAC Trends Anal Chem 98:95–103CrossRefGoogle Scholar
  14. Arduini F, Guidone S, Amine A, Palleschi G, Moscone D (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors Actuators B Chem 179:201–208CrossRefGoogle Scholar
  15. Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651CrossRefGoogle Scholar
  16. Arias-Barreiro CR, Okazaki K, Koutsaftis A, Inayat-Hussain SH, Tani A, Katsuhara M, Kimbara K, Mori IC (2010) A bacterial biosensor for oxidative stress using the constitutively expressed redox-sensitive protein roGFP2. Sensors (Basel, Switzerland) 10:6290–6306CrossRefGoogle Scholar
  17. Avramescu A, Rouillon R, Carpentier R (1999) Potential for use of a cyanobacterium Synechocystis sp. immobilized in poly(vinylalcohol): application to the detection of pollutants. Biotechnol Tech 13:559–562CrossRefGoogle Scholar
  18. Axelrod T, Eltzov E, Marks RS (2016) Bioluminescent bioreporter pad biosensor for monitoring water toxicity. Talanta 149:290–297CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bae J, Lim J-W, Kim T (2018) Reusable and storable whole-cell microbial biosensors with a microchemostat platform for in situ on-demand heavy metal detection. Sensors Actuators B Chem 264:372–381CrossRefGoogle Scholar
  20. Bagde VL, Borkar DB (2013) Biosensor: use in agriculture. Int J Sci Res 2:1–3Google Scholar
  21. Bakhori NM, Yusof NA, Abdullah AH, Hussein MZ (2013) Development of a fluorescence resonance energy transfer (FRET)-based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3:419–428CrossRefGoogle Scholar
  22. Balahura LR, Stefan-Van Staden RL, Van Staden JF, Aboul-Enein HA (2019) Advances in immunosensors for clinical applications. J Immunoass Immunochem 40:40–51CrossRefGoogle Scholar
  23. Belkhamssa N, da Costa JP, Justino CIL, Santos PSM, Cardoso S, Duarte AC, Rocha-Santos T, Ksibi M (2016a) Development of an electrochemical biosensor for alkylphenol detection. Talanta 158:30–34CrossRefPubMedPubMedCentralGoogle Scholar
  24. Belkhamssa N, Justino CIL, Santos PSM, Cardoso S, Lopes I, Duarte AC, Rocha-Santos T, Ksibi M (2016b) Label-free disposable immunosensor for detection of atrazine. Talanta 146:430–434CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bellan LM, Wu D, Langer RS (2011) Current trends in nanobiosensor technology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:229–246CrossRefPubMedPubMedCentralGoogle Scholar
  26. Berezhetskyy AL, Sosovska OF, Durrieu C, Chovelon JM, Dzyadevych SV, Tran-Minh C (2008) Alkaline phosphatase conductometric biosensor for heavy-metal ions determination. IRBM 29:136–140CrossRefGoogle Scholar
  27. Bettazzi F, Laschi S, Mascini M (2007) One-shot screen-printed thylakoid membrane-based biosensor for the detection of photosynthetic inhibitors in discrete samples. Anal Chim Acta 589:14–21CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bhalla V, Zazubovich V (2011) Self-assembly and sensor response of photosynthetic reaction centers on screen-printed electrodes. Anal Chim Acta 707:184–190CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bhalla V, Zhao X, Zazubovich V (2011) Detection of explosive compounds using Photosystem II-based biosensor. J Electroanal Chem 657:84–90CrossRefGoogle Scholar
  30. Biran I, Walt DR (2002) Chapter 1 – optrode-based fiber optic biosensors (bio-optrode). In: Ligler FS, Rowe Taitt CA (eds) Optical biosensors. Elsevier Science, Amsterdam, pp 5–56CrossRefGoogle Scholar
  31. Biran I, Babai R, Levcov K, Rishpon J, Ron EZ (2000) Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ Microbiol 2:285–290CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bonetto MC, Sacco NJ, Ohlsson AH, Cortón E (2011) Assessing the effect of oxygen and microbial inhibitors to optimize ferricyanide-mediated BOD assay. Talanta 85:455–462CrossRefPubMedPubMedCentralGoogle Scholar
  33. Bucur B, Dondoi M, Danet A, Marty J-L (2005) Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases. Anal Chim Acta 539:195–201CrossRefGoogle Scholar
  34. Bucur B, Munteanu FD, Marty JL, Vasilescu A (2018) Advances in enzyme-based biosensors for pesticide detection. Biosensors 8:27CrossRefGoogle Scholar
  35. Cai J, Du D (2008) A disposable sensor based on immobilization of acetylcholinesterase to multiwall carbon nanotube modified screen-printed electrode for determination of carbaryl. J Appl Electrochem 38:1217–1222CrossRefGoogle Scholar
  36. Campanella L, Cubadda F, Sammartino MP, Saoncella A (2001) An algal biosensor for the monitoring of water toxicity in estuarine environments. Water Res 35:69–76CrossRefPubMedPubMedCentralGoogle Scholar
  37. Can F, Korkut Ozoner S, Ergenekon P, Erhan E (2012) Amperometric nitrate biosensor based on Carbon nanotube/Polypyrrole/Nitrate reductase biofilm electrode. Mater Sci Eng C 32:18–23CrossRefGoogle Scholar
  38. Carpentier R, Loranger C, Chartrand J, Purcell M (1991) Photoelectrochemical cell containing chloroplast membranes as a biosensor for phytotoxicity measurement. Anal Chim Acta 249:55–60CrossRefGoogle Scholar
  39. Cesarino I, Moraes FC, Lanza MRV, Machado SAS (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135:873–879CrossRefGoogle Scholar
  40. Chai Y, Niu X, Chen C, Zhao H, Lan M (2013) Carbamate insecticide sensing based on acetylcholinesterase/Prussian blue-multi-walled carbon nanotubes/screen-printed electrodes. Anal Lett 46:803–817CrossRefGoogle Scholar
  41. Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613CrossRefPubMedPubMedCentralGoogle Scholar
  42. Charrier T, Chapeau C, Bendria L, Picart P, Daniel P, Thouand G (2011a) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor. Anal Bioanal Chem 400:1061–1070CrossRefPubMedPubMedCentralGoogle Scholar
  43. Charrier T, Durand M-J, Jouanneau S, Dion M, Pernetti M, Poncelet D, Thouand G (2011b) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains. Anal Bioanal Chem 400:1051–1060CrossRefPubMedPubMedCentralGoogle Scholar
  44. Chen D, Cao Y, Liu B, Kong J (2002) A BOD biosensor based on a microorganism immobilized on an Al2O3 sol–gel matrix. Anal Bioanal Chem 372:737–739CrossRefPubMedPubMedCentralGoogle Scholar
  45. Chen Q, Wu X, Wang D, Tang W, Li N, Liu F (2011a) Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury(ii) ions with high sensitivity and tunable dynamic range. Analyst 136:2572–2577CrossRefPubMedPubMedCentralGoogle Scholar
  46. Chen S, Huang J, Du D, Li J, Tu H, Liu D, Zhang A (2011b) Methyl parathion hydrolase based nanocomposite biosensors for highly sensitive and selective determination of methyl parathion. Biosens Bioelectron 26:4320–4325CrossRefPubMedPubMedCentralGoogle Scholar
  47. Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58CrossRefPubMedPubMedCentralGoogle Scholar
  48. Chen G-H, Chen W-Y, Yen Y-C, Wang C-W, Chang H-T, Chen C-F (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849CrossRefPubMedPubMedCentralGoogle Scholar
  49. Chen S, Chen X, Zhang L, Gao J, Ma Q (2017) Electrochemiluminescence detection of Escherichia coli O157:H7 based on a novel polydopamine surface imprinted polymer biosensor. ACS Appl Mater Interfaces 9:5430–5436CrossRefPubMedPubMedCentralGoogle Scholar
  50. Chen Y, Li H, Gao T, Zhang T, Xu L, Wang B, Wang J, Pei R (2018) Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II). Sensors Actuators B Chem 254:214–221CrossRefGoogle Scholar
  51. Choudhary MK, Singh M, Saharan W (2015) Application of nanobiosensors in agriculture. Popular Kheti 3:130–135Google Scholar
  52. Costa SPF, Cunha E, Azevedo AMO, Pereira SAP, Neves AFDC, Vilaranda AG, Araujo ARTS, Passos MLC, Pinto PCAG, Saraiva MLMFS (2018) Microfluidic chemiluminescence system with yeast saccharomyces cerevisiae for rapid biochemical oxygen demand measurement. ACS Sustain Chem Eng 6:6094–6101CrossRefGoogle Scholar
  53. Crew A, Lonsdale D, Byrd N, Pittson R, Hart JP (2011) A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens Bioelectron 26:2847–2851CrossRefPubMedPubMedCentralGoogle Scholar
  54. Dai Y, Liu CC (2017) Detection of 17 β-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors 7:15CrossRefGoogle Scholar
  55. Damborský P, Švitel J, Katrlík J (2016) Optical biosensors. Essays Biochem 60:91–100CrossRefPubMedPubMedCentralGoogle Scholar
  56. Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra Ray P (2008) Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130:8038–8043CrossRefPubMedPubMedCentralGoogle Scholar
  57. de Mora K, Joshi N, Balint BL, Ward FB, Elfick A, French CE (2011) A pH-based biosensor for detection of arsenic in drinking water. Anal Bioanal Chem 400:1031–1039CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dehnad A, Hamedi∗ J, Derakhshan-Khadivi F, Abuşov R (2015) Green synthesis of gold nanoparticles by a metal resistant arthrobacter nitroguajacolicus isolated from gold mine. IEEE Trans NanoBiosci 14:393–396CrossRefGoogle Scholar
  59. Deng H-H, Hong G-L, Lin F-L, Liu A-L, Xia X-H, Chen W (2016a) Colorimetric detection of urea, urease, and urease inhibitor based on the peroxidase-like activity of gold nanoparticles. Anal Chim Acta 915:74–80CrossRefPubMedPubMedCentralGoogle Scholar
  60. Deng Y, Liu K, Liu Y, Dong H, Li S (2016b) An novel acetylcholinesterase biosensor based on nano-porous pseudo carbon paste electrode modified with gold nanoparticles for detection of methyl parathion. J Nanosci Nanotechnol 16:9460–9467CrossRefGoogle Scholar
  61. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189CrossRefGoogle Scholar
  62. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91CrossRefGoogle Scholar
  63. Deshpande K, Mishra RK, Bhand S (2010) A high sensitivity micro format chemiluminescence enzyme inhibition assay for determination of Hg(II). Sensors (Basel, Switzerland) 10:6377–6394CrossRefGoogle Scholar
  64. Dhall P, Kumar A, Joshi A, Saxsena TK, Manoharan A, Makhijani SD, Kumar R (2008) Quick and reliable estimation of BOD load of beverage industrial wastewater by developing BOD biosensor. Sensors Actuators B Chem 133:478–483CrossRefGoogle Scholar
  65. Di Lorenzo M (2016) 11 – use of microbial fuel cells in sensors. In: Scott K, Yu EH (eds) Microbial electrochemical and fuel cells. Woodhead Publishing, Boston, pp 341–356CrossRefGoogle Scholar
  66. Domínguez-Renedo O, Alonso-Lomillo MA, Ferreira-Gonçalves L, Arcos-Martínez MJ (2009) Development of urease based amperometric biosensors for the inhibitive determination of Hg (II). Talanta 79:1306–1310CrossRefPubMedPubMedCentralGoogle Scholar
  67. Dong J, Hou J, Jiang J, Ai S (2015) Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe. Anal Chim Acta 885:92–97CrossRefPubMedPubMedCentralGoogle Scholar
  68. Duan J, Guo ZY (2012) Development of a test strip based on DNA-functionalized gold nanoparticles for rapid detection of mercury (II) ions. Chin Chem Lett 23:225–228CrossRefGoogle Scholar
  69. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23CrossRefGoogle Scholar
  70. Durmuş NG, Lin RL, Kozberg M, Dermici D, Khademhosseini A, Demirci U (2015) Acoustic-based biosensors. In: Li D (ed) Encyclopedia of microfluidics and nanofluidics. Springer, New York, pp 28–40CrossRefGoogle Scholar
  71. Durrieu C, Tran-Minh C (2002) Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol Environ Saf 51:206–209CrossRefGoogle Scholar
  72. Dwevedi A, Kumar P, Kumar P, Kumar Y, Sharma YK, Kayastha AM (2017) New pesticidies and soil sensors: nanotechnology in the agri-food industry. In: Grumezescu AM (ed) Soil sensors: detailed insight into research updates, significance, and future prospects. Elsevier Inc., LondonGoogle Scholar
  73. Economou A, Karapetis SK, Nikoleli G, Nikolelis DP, Bratakou S, Varzakas TH (2017) Enzyme-based sensors. In: Nollet FTALM (ed) Advances in food diagnostics. Wiley-Blackwell, Chichester, pp 231–250CrossRefGoogle Scholar
  74. Ejeian F, Etedali P, Mansouri-Tehrani H-A, Soozanipour A, Low Z-X, Asadnia M, Taheri-Kafrani A, Razmjou A (2018) Biosensors for wastewater monitoring: a review. Biosens Bioelectron 118:66–79CrossRefPubMedPubMedCentralGoogle Scholar
  75. Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:11–33CrossRefGoogle Scholar
  76. Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iran 20:1055–1058Google Scholar
  77. Eun AJ-C, Wong S-M (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90:269–275CrossRefPubMedPubMedCentralGoogle Scholar
  78. Eun AJ-C, Huang L, Chew F-T, Li SF-Y, Wong S-M (2002) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods 99:71–79CrossRefPubMedPubMedCentralGoogle Scholar
  79. Fan L, Zhao G, Shi H, Liu M, Wang Y, Ke H (2014) A femtomolar level and highly selective 17β-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environ Sci Technol 48:5754–5761CrossRefPubMedPubMedCentralGoogle Scholar
  80. Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561CrossRefPubMedPubMedCentralGoogle Scholar
  81. Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810CrossRefPubMedPubMedCentralGoogle Scholar
  82. Fang D, Gao G, Shen J, Yu Y, Zhi J (2016) A reagentless electrochemical biosensor based on thionine wrapped E. coli and chitosan-entrapped carbon nanodots film modified glassy carbon electrode for wastewater toxicity assessment. Electrochim Acta 222:303–311CrossRefGoogle Scholar
  83. Farré M, Barceló D (2009) Biosensors for aquatic toxicology evaluation. In: Barceló D, Hansen P-D (eds) Biosensors for environmental monitoring of aquatic systems: bioanalytical and chemical methods for endocrine disruptors. Springer, Berlin/Heidelberg, pp 115–160CrossRefGoogle Scholar
  84. Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129CrossRefPubMedPubMedCentralGoogle Scholar
  85. Fogel R, Limson J, Seshia AA (2016) Acoustic biosensors. Essays Biochem 60:101–110CrossRefPubMedPubMedCentralGoogle Scholar
  86. Foudeh AM, Trigui H, Mendis N, Faucher SP, Veres T, Tabrizian M (2015) Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples. Anal Bioanal Chem 407:5541–5545CrossRefPubMedPubMedCentralGoogle Scholar
  87. Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sensors Actuators B Chem 51:256–260CrossRefGoogle Scholar
  88. Firraro G, Moretti M, Ruiz Rosquete M, Gobbi E, R L (2005) Nanobiotransducer for detecting flavescence Doree phytoplasma. J Plant Pathol 87:101–107Google Scholar
  89. Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors (Basel, Switzerland) 10:625–638CrossRefGoogle Scholar
  90. Gao G, Qian J, Fang D, Yu Y, Zhi J (2016) Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium. Anal Chim Acta 924:21–28CrossRefPubMedPubMedCentralGoogle Scholar
  91. Gao G, Fang D, Yu Y, Wu L, Wang Y, Zhi J (2017) A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 167:208–216CrossRefPubMedPubMedCentralGoogle Scholar
  92. Gayathri S, Braganca J (2009) Biosensors for monitoring environmental pollutants: a review. Environ Sci Indian J 4:297–305Google Scholar
  93. Giannoudi L, Piletska EV, Piletsky SA (2006) Development of biosensors for the detection of hydrogen peroxide. In: Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, Boston, pp 175–191CrossRefGoogle Scholar
  94. Giardi MT, Pace E (2006) Photosystem II-based biosensors for the detection of photosynthetic herbicides. In: Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, Boston, pp 147–154CrossRefGoogle Scholar
  95. Giardi MT, Koblı́zek M, Masojı́dek J (2001) Photosystem II-based biosensors for the detection of pollutants. Biosens Bioelectron 16:1027–1033CrossRefPubMedPubMedCentralGoogle Scholar
  96. Giardi MT, Guzzella L, Euzet P, Rouillon R, Esposito D (2005) Detection of herbicide subclasses by an optical multibiosensor based on an array of photosystem II mutants. Environ Sci Technol 39:5378–5384CrossRefPubMedPubMedCentralGoogle Scholar
  97. Giardi MT, Scognamiglio V, Rea G, Rodio G, Antonacci A, Lambreva M, Pezzotti G, Johanningmeier U (2009) Optical biosensors for environmental monitoring based on computational and biotechnological tools for engineering the photosynthetic D1 protein of Chlamydomonas reinhardtii. Biosens Bioelectron 25:294–300CrossRefPubMedPubMedCentralGoogle Scholar
  98. Girigoswami K, Akhtar N (2019) Nanobiosensors and fluorescence based biosensors: an overview. Int J Nano Dimens 10:1–17Google Scholar
  99. Gong Z, Guo Y, Sun X, Cao Y, Wang X (2014) Acetylcholinesterase biosensor for carbaryl detection based on interdigitated array microelectrodes. Bioprocess Biosyst Eng 37:1929–1934CrossRefPubMedPubMedCentralGoogle Scholar
  100. González-Techera A, Zon MA, Molina PG, Fernández H, González-Sapienza G, Arévalo FJ (2015) Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens Bioelectron 64:650–656CrossRefPubMedPubMedCentralGoogle Scholar
  101. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors (Basel, Switzerland) 8:1400–1458CrossRefGoogle Scholar
  102. Gruzina TG, Zadorozhnyaya AM, Gutnik GA, Vember VV, Ulberg ZR, Kanyuk NI, Starodub NF (2007) A bacterial multisensor for determination of the contents of heavy metals in water. J Water Chem Technol 29:50–53CrossRefGoogle Scholar
  103. Gui Q, Lawson T, Shan S, Yan L, Liu Y (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors (Basel, Switzerland) 17:1623CrossRefGoogle Scholar
  104. Guo Z, Duan J, Yang F, Li M, Hao T, Wang S, Wei D (2012) A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions. Talanta 93:49–54CrossRefPubMedPubMedCentralGoogle Scholar
  105. Guo L, Li Z, Chen H, Wu Y, Chen L, Song Z, Lin T (2017) Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal Chim Acta 967:59–63CrossRefPubMedPubMedCentralGoogle Scholar
  106. Haigh-Flórez D, de la Hera C, Costas E, Orellana G (2014) Microalgae dual-head biosensors for selective detection of herbicides with fiber-optic luminescent O2 transduction. Biosens Bioelectron 54:484–491CrossRefPubMedPubMedCentralGoogle Scholar
  107. Han S, Zhu M, Yuan Z, Li X (2001) A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury–glutathione complex. Biosens Bioelectron 16:9–16CrossRefPubMedPubMedCentralGoogle Scholar
  108. Hashimoto Y, Nakamura H, Asaga K, Karube I (2008) A new diagnostic method for soil-borne disease using a microbial biosensor. Microbes Environ 23:35–39CrossRefPubMedPubMedCentralGoogle Scholar
  109. Hayman RB (2008) Fiber optic biosensors for bacterial detection. In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 125–137CrossRefGoogle Scholar
  110. He S, Feng Y (2017) The impact of engineered nanomaterials on crops and soil microorganisms. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer, Singapore, pp 191–208CrossRefGoogle Scholar
  111. He Y, Zhang X, Zeng K, Zhang S, Baloda M, Gurung AS, Liu G (2011) Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens Bioelectron 26:4464–4470CrossRefPubMedPubMedCentralGoogle Scholar
  112. He M-Q, Wang K, Wang J, Yu Y-L, He R-H (2017) A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal Bioanal Chem 409:1797–1803CrossRefPubMedPubMedCentralGoogle Scholar
  113. Hleli S, Martelet C, Abdelghani A, Burais N, Jaffrezic-Renault N (2006) Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer. Sensors Actuators B Chem 113:711–717CrossRefGoogle Scholar
  114. Hollis RP, Killham K, Glover LA (2000) Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl Environ Microbiol 66:1676–1679CrossRefPubMedPubMedCentralGoogle Scholar
  115. Husu I, Rodio G, Touloupakis E, Lambreva MD, Buonasera K, Litescu SC, Giardi MT, Rea G (2013) Insights into photo-electrochemical sensing of herbicides driven by Chlamydomonas reinhardtii cells. Sensors Actuators B Chem 185:321–330CrossRefGoogle Scholar
  116. Ilangovan R, Daniel D, Krastanov A, Zachariah C, Elizabeth R (2006) Enzyme based biosensor for heavy metal ions determination. Biotechnol Biotechnol Equip 20:184–189CrossRefGoogle Scholar
  117. Ispas CR, Crivat G, Andreescu S (2012) Review: recent developments in enzyme-based biosensors for biomedical analysis. Anal Lett 45:168–186CrossRefGoogle Scholar
  118. Istamboulie G, Andreescu S, Marty J-L, Noguer T (2007) Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosens Bioelectron 23:506–512CrossRefPubMedPubMedCentralGoogle Scholar
  119. Istamboulie G, Fournier D, Marty J-L, Noguer T (2009) Phosphotriesterase: a complementary tool for the selective detection of two organophosphate insecticides: chlorpyrifos and chlorfenvinfos. Talanta 77:1627–1631CrossRefPubMedPubMedCentralGoogle Scholar
  120. Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors (Basel, Switzerland) 8:2569–2588CrossRefGoogle Scholar
  121. Jatav GK, Nirmal DE (2013) Application of nano-technology in soil-plant system. Asian J Soil Sci 8:176–184Google Scholar
  122. Jeyapragasam T, Saraswathi R (2014) Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide–chitosan nanocomposite. Sensors Actuators B Chem 191:681–687CrossRefGoogle Scholar
  123. Ji X, Zheng J, Xu J, Rastogi VK, Cheng T-C, DeFrank JJ, Leblanc RM (2005) (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J Phys Chem B 109:3793–3799CrossRefPubMedPubMedCentralGoogle Scholar
  124. Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140:6404–6411CrossRefPubMedPubMedCentralGoogle Scholar
  125. Jiao Y, Hou W, Fu J, Guo Y, Sun X, Wang X, Zhao J (2017) A nanostructured electrochemical aptasensor for highly sensitive detection of chlorpyrifos. Sensors Actuators B Chem 243:1164–1170CrossRefGoogle Scholar
  126. Joe M-H, Lee K-H, Lim S-Y, Im S-H, Song H-P, Lee IS, Kim D-H (2012) Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioprocess Biosyst Eng 35:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  127. Justino CIL, Duarte AC, Rocha-Santos TAP (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors (Basel, Switzerland) 17:2918CrossRefGoogle Scholar
  128. Kabariya JH, Ramani VM (2017) Nanobiosensors, as a next-generation diagnostic device for quality & safety of food and dairy product. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer, Singapore, pp 115–129CrossRefGoogle Scholar
  129. Kang T, Yoo SM, Yoon I, Lee S, Choo J, Lee SY, Kim B (2011) Au nanowire-on-film SERRS sensor for ultrasensitive Hg2+ detection. Chem Eur J 17:2211–2214CrossRefPubMedPubMedCentralGoogle Scholar
  130. Kanjana D (2017) Advancement of nanotechnology applications on plant nutrients management and soil improvement. In: Prasad R, Kumar V, Kumar M (eds) Nanotechnology: food and environmental paradigm. Springer, Singapore, pp 209–234CrossRefGoogle Scholar
  131. Karnati C, Du H, Ji H-F, Xu X, Lvov Y, Mulchandani A, Mulchandani P, Chen W (2007) Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. Biosens Bioelectron 22:2636–2642CrossRefPubMedPubMedCentralGoogle Scholar
  132. Kaushal M, Wani S (2017) Nanosensors: frontiers in precision agriculture. In: Nanotechnolgy. Springer, Singapore, pp 279–291CrossRefGoogle Scholar
  133. Kaushik A, Solanki PR, Ansari AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem Eng J 46:132–140CrossRefGoogle Scholar
  134. Kavita V (2017) DNA biosensors-a review. J Bioeng Biomed Sci 7:222Google Scholar
  135. Khadivi Derakhshan F, Dehnad A, Salouti M (2012) Extracellular biosynthesis of gold nanoparticles by metal resistance bacteria: Streptomyces griseus. Synth React Inorg Met-Org Nano-Metal Chem 42:868–871Google Scholar
  136. Khaledian S, Nikkhah M, Shams-bakhsh M, Hoseinzadeh S (2017) A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. J Gen Plant Pathol 83:231–239CrossRefGoogle Scholar
  137. Khan M, Fatima T (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231CrossRefGoogle Scholar
  138. Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785CrossRefPubMedPubMedCentralGoogle Scholar
  139. Khor BH, Ismail AK, Ahamad R, Shahir S (2015) A redox mediated UME biosensor using immobilized Chromobacterium violaceum strain R1 for rapid biochemical oxygen demand measurement. Electrochim Acta 176:777–783CrossRefGoogle Scholar
  140. Kim M, Lim JW, Kim HJ, Lee SK, Lee SJ, Kim T (2015) Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors. Biosens Bioelectron 65:257–264CrossRefPubMedPubMedCentralGoogle Scholar
  141. Kim HJ, Lim JW, Jeong H, Lee S-J, Lee D-W, Kim T, Lee SJ (2016) Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens Bioelectron 79:701–708CrossRefPubMedPubMedCentralGoogle Scholar
  142. Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33–46CrossRefPubMedPubMedCentralGoogle Scholar
  143. Koblizek M, Masojidek J, Komenda J, Kucera T, Pilloton R, Mattoo AK, Giardi MT (1998) A sensitive photosystem II-based biosensor for detection of a class of herbicides. Biotechnol Bioeng 20:664–669CrossRefGoogle Scholar
  144. Koblížek M, Malý J, Masojídek J, Komenda J, Kučera T, Giardi MT, Mattoo AK, Pilloton R (2002) A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode. Biotechnol Bioeng 78:110–116CrossRefPubMedPubMedCentralGoogle Scholar
  145. Koedrith P, Thasiphu T, Weon J-I, Boonprasert R, Tuitemwong K, Tuitemwong P (2015) Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. Sci World J 2015:12CrossRefGoogle Scholar
  146. Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors. Anal Chem 71:5093–5100CrossRefPubMedPubMedCentralGoogle Scholar
  147. Kuswandi B (2003) Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Anal Bioanal Chem 376:1104–1110CrossRefPubMedPubMedCentralGoogle Scholar
  148. Kwak S-Y, Wong MH, Thomas Salim Lew T, Bisker G, Lee MA, Kaplan A, Dong J, Tianxiang Liu A, Koman VB, Sinclair R, Hamann C, Strano MS (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 13:113–140CrossRefGoogle Scholar
  149. Kwok N-Y, Dong S, Lo W, Wong K-Y (2005) An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD). Sensors Actuators B Chem 110:289–298CrossRefGoogle Scholar
  150. Lammers F, Scheper T (1999) Thermal biosensors in biotechnology. In: Bhatia PK, Danielsson B, Gemeiner P, Grabley S, Lammers F, Mukhopadhyay A, Ramanathan K, Saleemuddin M, Scheper T, Stefuca V, Thiericke R, Xie B (eds) Thermal biosensors, bioactivity, bioaffinitty. Springer, Berlin/Heidelberg, pp 35–67CrossRefGoogle Scholar
  151. Lang Q, Han L, Hou C, Wang F, Liu A (2016) A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta 156–157:34–41CrossRefPubMedPubMedCentralGoogle Scholar
  152. Lara S, Perez-Potti A (2018) Review: applications of nanomaterials for immunosensing. Biosens Bioelectron 8:104–125CrossRefGoogle Scholar
  153. Lee MM, Russell DA (2003) Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance. Anal Chim Acta 500:119–125CrossRefGoogle Scholar
  154. Leth S, Maltoni S, Simkus R, Mattiasson B, Corbisier P, Klimant I, Wolfbeis O, Csöregi E (2002) Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 14:35–42CrossRefGoogle Scholar
  155. Li J, Chen L, Lou T, Wang Y (2011) Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles. ACS Appl Mater Interfaces 3:3936–3941CrossRefPubMedPubMedCentralGoogle Scholar
  156. Li M, Zhou X, Guo S, Wu N (2013) Detection of lead (II) with a “turn-on” fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Biosens Bioelectron 43:69–74CrossRefPubMedPubMedCentralGoogle Scholar
  157. Li M, Kong Q, Bian Z, Ma C, Ge S, Zhang Y, Yu J, Yan M (2015) Ultrasensitive detection of lead ion sensor based on gold nanodendrites modified electrode and electrochemiluminescent quenching of quantum dots by electrocatalytic silver/zinc oxide coupled structures. Biosens Bioelectron 65:176–182CrossRefPubMedPubMedCentralGoogle Scholar
  158. Li Y, Shi L, Han G, Xiao Y, Zhou W (2017a) Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sensors Actuators B Chem 238:945–953CrossRefGoogle Scholar
  159. Li Z, Qu S, Cui L, Zhang S (2017b) Detection of carbofuran pesticide in seawater by using an enzyme biosensor. J Coast Res 80:1–5CrossRefGoogle Scholar
  160. Lim JW, Ha D, Lee J, Lee SK, Kim T (2015a) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:1–13CrossRefGoogle Scholar
  161. Lim JW, Ha D, Lee J, Lee SK, Kim T (2015b) Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol 3:61–61CrossRefPubMedPubMedCentralGoogle Scholar
  162. Lin T-J, Chung M-F (2009) Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance. Biosens Bioelectron 24:1213–1218CrossRefPubMedPubMedCentralGoogle Scholar
  163. Lin T-J, Huang K-T, Liu C-Y (2006) Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron 22:513–518CrossRefPubMedPubMedCentralGoogle Scholar
  164. Lin H-Y, Huang C-H, Lu S-H, Kuo IT, Chau L-K (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378CrossRefPubMedPubMedCentralGoogle Scholar
  165. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227CrossRefPubMedPubMedCentralGoogle Scholar
  166. Liu Z, Liu Y, Yang H, Yang Y, Shen G, Yu R (2005) A phenol biosensor based on immobilizing tyrosinase to modified core-shell magnetic nanoparticles supported at a carbon paste electrode. Anal Chim Acta 533:3–9CrossRefGoogle Scholar
  167. Liu P, Huang Q, Chen W (2012) Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Environ Pollut 164:66–72CrossRefPubMedPubMedCentralGoogle Scholar
  168. Liu X, Li W-J, Li L, Yang Y, Mao L-G, Peng Z (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors Actuators B Chem 191:408–414CrossRefGoogle Scholar
  169. Liu Q, Fei A, Huan J, Mao H, Wang K (2015) Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure. J Electroanal Chem 740:8–13CrossRefGoogle Scholar
  170. Long F, Zhu A, Shi H (2013a) Recent advances in optical biosensors for environmental monitoring and early warning. Sensors (Basel, Switzerland) 13:13928–13948CrossRefGoogle Scholar
  171. Long F, Zhu A, Shi H, Wang H, Liu J (2013b) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3:2308CrossRefPubMedPubMedCentralGoogle Scholar
  172. Lopez MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogen bacteria and viruses? Curr Issues Mol Biol 11:13–46PubMedPubMedCentralGoogle Scholar
  173. Lu L, Guo L, Li J, Kang T, Cheng S (2016) Electrochemiluminescent detection of Pb2+ by graphene/gold nanoparticles and CdSe quantum dots. Appl Surf Sci 388:431–436CrossRefGoogle Scholar
  174. Luan E, Zheng Z, Li X, Gu H, Liu S (2016) Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides. Anal Chim Acta 916:77–83CrossRefPubMedPubMedCentralGoogle Scholar
  175. Lukyanenko KA, Denisov IA, Sorokin VV, Yakimov AS, Esimbekova EN, Belobrov PI (2019) Handheld enzymatic luminescent biosensor for rapid detection of heavy metals in water samples. Chemosensors 7:16CrossRefGoogle Scholar
  176. Ma W, Sun M, Xu L, Wang L, Kuang H, Xu C (2013) A SERS active gold nanostar dimer for mercury ion detection. Chem Commun 49:4989–4991CrossRefGoogle Scholar
  177. Madasamy T, Pandiaraj M, Balamurugan M, Bhargava K, Sethy NK, Karunakaran C (2014) Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 52:209–215CrossRefPubMedPubMedCentralGoogle Scholar
  178. Maderova L, Paton GI (2013) Deployment of microbial sensors to assess zinc bioavailability and toxicity in soils. Soil Biol Biochem 66:222–228CrossRefGoogle Scholar
  179. Madianos L, Tsekenis G, Skotadis E, Patsiouras L, Tsoukalas D (2018) A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens Bioelectron 101:268–274CrossRefPubMedPubMedCentralGoogle Scholar
  180. Malik P, Katyal V, Malik V, Asatkar A, Inwati G, Mukherjee TK (2013) Nanobiosensors: concepts and variations. ISRN Nanomater 2013:9Google Scholar
  181. Mallat E, Barzen C, Abuknesha R, Gauglitz G, Barceló D (2001) Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection. Anal Chim Acta 427:165–171CrossRefGoogle Scholar
  182. Maly J, Masojidek J, Masci A, Ilie M, Cianci E, Foglietti V, Vastarella W, Pilloton R (2005) Direct mediatorless electron transport between the monolayer of photosystem II and poly(mercapto-p-benzoquinone) modified gold electrode—new design of biosensor for herbicide detection. Biosens Bioelectron 21:923–932CrossRefPubMedPubMedCentralGoogle Scholar
  183. Margarita S, Velizar G, Zdravka V (2016) Electrochemical biosensors for direct determination of organophosphorus pesticides: a review. Curr Anal Chem 12:37–42Google Scholar
  184. Marques I, da Costa JP, Justino C, Santos P, Duarte K, Freitas A, Cardoso S (2017) Carbon nanotube field effect biosensor for the detection of toxins in seawater. Anal Chem 97:597–605Google Scholar
  185. Martín M, Salazar P, Jiménez C, Lecuona M, Ramos MJ, Ode J, Alcoba J, Roche R, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL (2015) Rapid Legionella pneumophila determination based on a disposable core–shell Fe3O4@poly(dopamine) magnetic nanoparticles immunoplatform. Anal Chim Acta 887:51–58CrossRefPubMedPubMedCentralGoogle Scholar
  186. Martinazzo J, Muenchen DK, de Cezaro A, Nava A, Rigo AM, Leite F, Steffens C, Steffens J (2018) Pesticide detection in soil using biosensors and nanobiosensors. Biointerface Res Appl Chem 6(6):1659–1675Google Scholar
  187. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2015) Advanced methods of plant disease detection. A review. Agron Sustain Dev 35:1–25CrossRefGoogle Scholar
  188. Masojídek J, Souček P, Máchová J, Frolík J, Klem K, Malý J (2011) Detection of photosynthetic herbicides: algal growth inhibition test vs. electrochemical photosystem II biosensor. Ecotoxicol Environ Saf 74:117–122CrossRefPubMedPubMedCentralGoogle Scholar
  189. Mayorga-Martinez CC, Pino F, Kurbanoglu S, Rivas L, Ozkan SA, Merkoçi A (2014) Iridium oxide nanoparticle induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J Mater Chem B 2:2233–2239CrossRefGoogle Scholar
  190. McGrath SP, Knight B, Killham K, Preston S, Paton GI (1999) Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux-based biosensor. Environ Toxicol Chem 18:659–663CrossRefGoogle Scholar
  191. McPartlin DA, Lochhead MJ, Connell LB, Doucette GJ, O’Kennedy RJ (2016) Use of biosensors for the detection of marine toxins. Essays Biochem 60:49–58CrossRefPubMedPubMedCentralGoogle Scholar
  192. Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofacial Res 6:153–159CrossRefGoogle Scholar
  193. Meng X, Wei J, Ren X, Ren J, Tang F (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407CrossRefPubMedPubMedCentralGoogle Scholar
  194. Mishra A, Kumar J, Melo JS (2017) An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens Bioelectron 87:332–338CrossRefPubMedPubMedCentralGoogle Scholar
  195. Mogha NK, Sahu V, Sharma M, Sharma RK, Masram DT (2016) Biocompatible ZrO2- reduced graphene oxide immobilized AChE biosensor for chlorpyrifos detection. Mater Des 111:312–320CrossRefGoogle Scholar
  196. Mohammadi H, Amine A, Cosnier S, Mousty C (2005) Mercury–enzyme inhibition assays with an amperometric sucrose biosensor based on a trienzymatic-clay matrix. Anal Chim Acta 543:143–149CrossRefGoogle Scholar
  197. Mohammadi-Aloucheh R, Alaee Mollabashi Y, Asadi A, Baris O, Golamzadeh S (2018) The role of nanobiosensors in identifying pathogens and environmental hazards. Anthropogenic Pollut J 2:16–25Google Scholar
  198. Mohanty SP, Kougianos E (2006) Biosensors: a tutorial review. IEEE Potentials 25:35–40CrossRefGoogle Scholar
  199. Moon H, Chang IS, Kang KH, Jang JK, Kim BH (2004) Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Biotechnol Lett 26:1717–1721CrossRefPubMedPubMedCentralGoogle Scholar
  200. Morgan CL, Newman DJ, Price CP (1996) Immunosensors: technology and opportunities in laboratory medicine. Clin Chem 42:193–209CrossRefPubMedPubMedCentralGoogle Scholar
  201. Moro L, Pezzotti G, Turemis M, Sanchís J, Farré M, Denaro R, Giacobbe MG, Crisafi F, Giardi MT (2018) Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay. Mar Pollut Bull 129:212–221CrossRefPubMedPubMedCentralGoogle Scholar
  202. Mourzina IG, Yoshinobu T, Ermolenko YE, Vlasov YG, Schöning MJ, Iwasaki H (2004) Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors. Microchim Acta 144:41–50CrossRefGoogle Scholar
  203. Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers KR (2001) Biosensors for direct determination of organophosphate pesticides. Biosens Bioelectron 16:225–230CrossRefPubMedPubMedCentralGoogle Scholar
  204. Mura S, Greppi G, Roggero PP, Musu E, Pittalis D, Carletti A, Ghiglieri G, Irudayaraj J (2015) Functionalized gold nanoparticles for the detection of nitrates in water. Int J Environ Sci Technol 12:1021–1028CrossRefGoogle Scholar
  205. Naessens M, Leclerc J, Tran-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185CrossRefGoogle Scholar
  206. Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446–468CrossRefPubMedPubMedCentralGoogle Scholar
  207. Nakamura H, Kobayashi S, Hirata Y, Suzuki K, Mogi Y, Karube I (2007) A spectrophotometric biochemical oxygen demand determination method using 2,6-dichlorophenolindophenol as the redox color indicator and the eukaryote Saccharomyces cerevisiae. Anal Biochem 369:168–174CrossRefPubMedPubMedCentralGoogle Scholar
  208. Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R (2012) Optical biosensors for food quality and safety assurance-a review. J Food Sci Technol 49:383–406CrossRefPubMedPubMedCentralGoogle Scholar
  209. Neethirajan S, Jayas DS (2007) Sensors for grain storage. ASABE Annual International Meeting, Technical Papers.  https://doi.org/10.13031/2013.23510CrossRefGoogle Scholar
  210. Nepomuscene N, Daniel D, Krastanov A (2007) Biosensor to detect chromium in wastewater. Biotechnol Biotechnol Equip 21:377–381CrossRefGoogle Scholar
  211. Niu X, Zhong Y, Chen R, Wang F, Liu Y, Luo D (2018) A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sensors Actuators B Chem 255:1577–1581CrossRefGoogle Scholar
  212. Niyomdecha S, Limbut W, Numnuam A, Asawatreratanakul P, Kanatharana P, Thavarungkul P (2017) A novel BOD biosensor based on entrapped activated sludge in a porous chitosan-albumin cryogel incorporated with graphene and methylene blue. Sensors Actuators B Chem 241:473–481CrossRefGoogle Scholar
  213. Nsibande SA, Forbes PBC (2016) Fluorescence detection of pesticides using quantum dot materials – a review. Anal Chim Acta 945:9–22CrossRefPubMedPubMedCentralGoogle Scholar
  214. Nunes GS, Montesinos T, Marques PBO, Fournier D, Marty JL (2001) Acetylcholine enzyme sensor for determining methamidophos insecticide: evaluation of some genetically modified acetylcholinesterases from Drosophila melanogaster. Anal Chim Acta 434:1–8CrossRefGoogle Scholar
  215. Nunes GS, Lins JAP, Silva FGS, Araujo LC, Silva FEPS, Mendonça CD, Badea M, Hayat A, Marty JL (2014) Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem. Chemosphere 111:623–630CrossRefPubMedPubMedCentralGoogle Scholar
  216. Paitan Y, Biran D, Biran I, Shechter N, Babai R, Rishpon J, Ron EZ (2003) On-line and in situ biosensors for monitoring environmental pollution. Biotechnol Adv 22:27–33CrossRefPubMedPubMedCentralGoogle Scholar
  217. Pal P, Bhattacharyay D, Mukhopadhyay A, Sarkar P (2009) The detection of mercury, cadium, and arsenic by the deactivation of urease on rhodinized carbon. Environ Eng Sci 26:25–32CrossRefGoogle Scholar
  218. Pan Y, Zhou J, Su K, Hu N, Wang P (2017) A novel quantum dot fluorescence immunosensor based on magnetic beads and portable flow cytometry for detection of okadaic acid. Proced Technol 27:214–216CrossRefGoogle Scholar
  219. Pan J, Li Q, Zhou D, Chen J (2018) Ultrasensitive aptamer biosensor for arsenic (III) detection based on label-free triple-helix molecular switch and fluorescence sensing platform. Talanta 189:370–376CrossRefPubMedPubMedCentralGoogle Scholar
  220. Pandit S, Dasgupta D, Dewan N, Ahmed A (2016) Nanotechnology based biosensors and its application. Pharma Innov J 5:18–25CrossRefGoogle Scholar
  221. Pang H-L, Kwok N-Y, Chan P-H, Yeung C-H, Lo W, Wong K-Y (2007) High-throughput determination of biochemical oxygen demand (BOD) by a microplate-based biosensor. Environ Sci Technol 41:4038–4044CrossRefPubMedPubMedCentralGoogle Scholar
  222. Park EJ, Lee J-Y, Kim JH, Lee CJ, Kim HS, Min NK (2010) Investigation of plasma-functionalized multiwalled carbon nanotube film and its application of DNA sensor for Legionella pneumophila detection. Talanta 82:904–911CrossRefPubMedPubMedCentralGoogle Scholar
  223. Park J, You X, Jang Y, Nam Y, Kim MJ, Min NK, Pak JJ (2014) ZnO nanorod matrix based electrochemical immunosensors for sensitivity enhanced detection of Legionella pneumophila. Sensors Actuators B Chem 200:173–180CrossRefGoogle Scholar
  224. Park M, Ha HD, Kim YT, Jung JH, Kim S-H, Kim DH, Seo TS (2015) Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection. Anal Chem 87:10969–10975CrossRefPubMedPubMedCentralGoogle Scholar
  225. Patel N, Desai P, Patel NN, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management : a review. Int J Curr Microbiol Appl Sci 3:71–84Google Scholar
  226. Pedrosa VA, Paliwal S, Balasubramanian S, Nepal D, Davis V, Wild J, Ramanculov E, Simonian A (2010) Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes. Colloids Surf B: Biointerfaces 77:69–74CrossRefPubMedPubMedCentralGoogle Scholar
  227. Peng L, Dong S, Wei W, Yuan X, Huang T (2017) Synthesis of reticulated hollow spheres structure NiCo2S4 and its application in organophosphate pesticides biosensor. Biosens Bioelectron 92:563–569CrossRefPubMedPubMedCentralGoogle Scholar
  228. Piletska EV, Piletsky SA, Rouillon R (2006) Application of chloroplast D1 protein in biosensors for monitoring photosystem II-inhibiting herbicides. In: Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, Boston, pp 130–146CrossRefGoogle Scholar
  229. Pogačnik L, Franko M (1999) Determination of organophosphate and carbamate pesticides in spiked samples of tap water and fruit juices by a biosensor with photothermal detection. Biosens Bioelectron 14:569–578CrossRefPubMedPubMedCentralGoogle Scholar
  230. Pospíšilová M, Kuncová G, Trögl J (2015) Fiber-optic chemical sensors and fiber-optic bio-sensors. Sensors (Basel, Switzerland) 15:25208–25259CrossRefGoogle Scholar
  231. Prabhakar N, Arora K, Singh SP, Pandey MK, Singh H, Malhotra BD (2007) Polypyrrole-polyvinyl sulphonate film based disposable nucleic acid biosensor. Anal Chim Acta 589:6–13CrossRefPubMedPubMedCentralGoogle Scholar
  232. Prakash O, Talat M, Hasan SH, Pandey RK (2008) Enzymatic detection of mercuric ions in ground-water from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads. Bioresour Technol 99:4524–4528CrossRefPubMedPubMedCentralGoogle Scholar
  233. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014–1014CrossRefPubMedPubMedCentralGoogle Scholar
  234. Přibyl J, Hepel M, Halámek J, Skládal P (2003) Development of piezoelectric immunosensors for competitive and direct determination of atrazine. Sensors Actuators B Chem 91:333–341CrossRefGoogle Scholar
  235. Qi Y, Xiu F-R, Yu G, Huang L, Li B (2017) Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: a new signal amplification mechanism. Biosens Bioelectron 87:439–446CrossRefPubMedPubMedCentralGoogle Scholar
  236. Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H, Foroutan A, Mardi M, Davoudi D, Fotokian M (2012) Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol 94:525–534Google Scholar
  237. Ragavan KV, Selvakumar LS, Thakur MS (2013) Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem Commun 49:5960–5962CrossRefGoogle Scholar
  238. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 03(02):10CrossRefGoogle Scholar
  239. Rajkumar P, Ramprasath T, Selvam GS (2017) 12 – A simple whole cell microbial biosensors to monitor soil pollution. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic, New York, pp 437–481CrossRefGoogle Scholar
  240. Ramanathan K, Rank M, Svitel J, Dzgoev A, Danielsson B (1999) The development and applications of thermal biosensors for bioprocess monitoring. Trends Biotechnol 17:499–505CrossRefPubMedPubMedCentralGoogle Scholar
  241. Rasmussen M, Minteer SD (2013) Self-powered herbicide biosensor utilizing thylakoid membranes. Anal Methods 5:1140–1144CrossRefGoogle Scholar
  242. Rasmussen M, Wingersky A, Minteer SD (2014) Comparative study of thylakoids from higher plants for solar energy conversion and herbicide detection. Electrochim Acta 140:304–308CrossRefGoogle Scholar
  243. Ravikumar S, Ganesh I, Yoo I-k, Hong SH (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 47:758–765CrossRefGoogle Scholar
  244. Ravikumar A, Panneerselvam P, Radhakrishnan K, Morad N, Anuradha CD, Sivanesan S (2017) DNAzyme based amplified biosensor on ultrasensitive fluorescence detection of Pb (II) ions from aqueous system. J Fluoresc 27:2101–2109CrossRefPubMedPubMedCentralGoogle Scholar
  245. Reshetilov A, Arlyapov V, Alferov V, Reshetilova T (2013) BOD biosensors: application of novel technologies and prospects for the development. In: Rinken T (ed) State of the art in biosensors – environmental and medical applications. IntechOpen, RijekaGoogle Scholar
  246. Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 84:74–83CrossRefGoogle Scholar
  247. Rizzuto M, Polcaro C, Desiderio C, Koblizek M, Pilloton R, Giardi MT (2000) Herbicide monitoring in surface water samples with a Photosystem-II based biosensor. In: Proceedings of the second workshop on chemical sensors and biosensors. ENEA, Rome, pp 346–357Google Scholar
  248. Rodriguez M, Sanders CA, Greenbaum E (2002) Biosensors for rapid monitoring of primary-source drinking water using naturally occurring photosynthesis. Biosens Bioelectron 17:843–849CrossRefPubMedPubMedCentralGoogle Scholar
  249. Rodriguez BB, Bolbot JA, Tothill IE (2004) Urease–glutamic dehydrogenase biosensor for screening heavy metals in water and soil samples. Anal Bioanal Chem 380:284–292CrossRefPubMedPubMedCentralGoogle Scholar
  250. Rodríguez-Mozaz S, Marco MP, Lopez de Alda M, Barcelà D (2004) Biosensors for environmental applications: future development trends. Pure Appl Chem 76(4):723–752CrossRefGoogle Scholar
  251. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763CrossRefPubMedPubMedCentralGoogle Scholar
  252. Rouillon R, Piletsky SA, Breton F, Piletska EV, Carpentier R (2006) Photosystem II biosensors for heavy metals monitoring. In: Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, Boston, pp 166–174CrossRefGoogle Scholar
  253. Sadeghi SJ (2013) Amperometric biosensors. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin/Heidelberg, pp 61–67CrossRefGoogle Scholar
  254. Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Rad F, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515CrossRefGoogle Scholar
  255. Sakaguchi T, Morioka Y, Yamasaki M, Iwanaga J, Beppu K, Maeda H, Morita Y, Tamiya E (2007) Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip. Biosens Bioelectron 22:1345–1350CrossRefPubMedPubMedCentralGoogle Scholar
  256. Salgado AM, Silva LM, Melo AF (2011) Biosensor for environmental applications. In: Somerset V (ed) Environmental biosensors. IntechOpen, Rijeka, pp 4–14Google Scholar
  257. Samendra PS, Masaaki K, Charles PG, Ian LP (2014) Rapid detection technologies for monitoring microorganisms in water. Biosens J 3:009Google Scholar
  258. Sang S, Zhang W, Zhao Y (2013) Review on the design art of biosensors. In: Rinken T (ed) State of the art in biosensors-general aspects. IntechOpen, RijekaGoogle Scholar
  259. Santos CS, Mossanha R, Pessôa CA (2015) Biosensor for carbaryl based on gold modified with PAMAM-G4 dendrimer. J Appl Electrochem 45:325–334CrossRefGoogle Scholar
  260. Sawant SN (2017) 13 – development of biosensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, Cabibihan JJ, AlMaadeed MA (eds) Biopolymer composites in electronics. Elsevier, Cambridge, pp 353–383CrossRefGoogle Scholar
  261. Schöning MJ, Krause R, Block K, Musahmeh M, Mulchandani A, Wang J (2003) A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides. Sensors Actuators B Chem 95:291–296CrossRefGoogle Scholar
  262. Scognamiglio V, Raffi D, Lambreva M, Rea G, Tibuzzi A, Pezzotti G, Johanningmeier U, Giardi MT (2009) Chlamydomonas reinhardtii genetic variants as probes for fluorescence sensing system in detection of pollutants. Anal Bioanal Chem 394:1081CrossRefPubMedPubMedCentralGoogle Scholar
  263. Scognamiglio V, Pezzotti I, Pezzotti G, Cano J, Manfredonia I, Buonasera K, Arduini F, Moscone D, Palleschi G, Giardi MT (2012) Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals. Anal Chim Acta 751:161–170CrossRefPubMedPubMedCentralGoogle Scholar
  264. Scognamiglio V, Pezzotti I, Pezzotti G, Cano J, Manfredonia I, Buonasera K, Rodio G, Giardi MT (2013) A new embedded biosensor platform based on micro-electrodes array (MEA) technology. Sensors Actuators B Chem 176:275–283CrossRefGoogle Scholar
  265. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53CrossRefPubMedPubMedCentralGoogle Scholar
  266. Seo S, Dobozi-King M, Young RF, Kish LB, Cheng M (2008) Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron Eng 85:1484–1489CrossRefGoogle Scholar
  267. Shahbazi R, Salouti M, Amini B, Jalilvand A, Naderlou E, Amini A, Shams A (2018) Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor. Mol Cell Probes 41:8–13CrossRefPubMedPubMedCentralGoogle Scholar
  268. Shao CY, Howe CJ, Porter AJR, Glover LA (2002) Novel Cyanobacterial Biosensor For Detection Of Herbicides. Appl Environ Microbiol 68:5026–5033CrossRefPubMedPubMedCentralGoogle Scholar
  269. Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761CrossRefPubMedPubMedCentralGoogle Scholar
  270. Shi L, Wang Y, Chu Z, Yin Y, Jiang D, Luo J, Ding S, Jin W (2017) A highly sensitive and reusable electrochemical mercury biosensor based on tunable vertical single-walled carbon nanotubes and a target recycling strategy. J Mater Chem B 5:1073–1080CrossRefGoogle Scholar
  271. Shitanda I, Takamatsu S, Watanabe K, Itagaki M (2009) Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds. Electrochim Acta 54:4933–4936CrossRefGoogle Scholar
  272. Shofiul Azam MD, Tanver Rahman MDR, Lou Z, Jothi JS (2014) Review: advancements and application of immunosensors in the analysis of food contaminants. Nusantara Biosci 6:186–195Google Scholar
  273. Shtenberg G, Massad-Ivanir N, Segal E (2015) Detection of trace heavy metal ions in water by nanostructured porous Si biosensors. Analyst 140:4507–4514CrossRefPubMedPubMedCentralGoogle Scholar
  274. Shyuan LK, Heng LY, Ahmad M, Aziz SA, Ishak Z (2008) Evaluation of pesticide and heavy metal toxicity using immobilized enzyme alkaline phosphatase with an electrochemical biosensor. Asian J Biochem 3:359–365CrossRefGoogle Scholar
  275. Siddiquee S, Rovina K, Yusof NA, Rodrigues KF, Suryani S (2014) Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Sens Bio-Sens Res 2:16–22CrossRefGoogle Scholar
  276. Simonian AL, Grimsley JK, Flounders AW, Schoeniger JS, Cheng T-C, DeFrank JJ, Wild JR (2001) Enzyme-based biosensor for the direct detection of fluorine-containing organophosphates. Anal Chim Acta 442:15–23CrossRefGoogle Scholar
  277. Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test. Thin Solid Films 519:1156–1159CrossRefGoogle Scholar
  278. Singh S, Gupta AK, Gupta S, Gupta S, Kumar A (2014) Surface Plasmon Resonance (SPR) and cyclic voltammetry based immunosensor for determination of teliosporic antigen and diagnosis of Karnal Bunt of wheat using anti-teliosporic antibody. Sensors Actuators B Chem 191:866–873CrossRefGoogle Scholar
  279. Skottrup P, Hearty S, Frøkiær H, Leonard P, Hejgaard J, O’Kennedy R, Nicolaisen M, Justesen AF (2007) Detection of fungal spores using a generic surface plasmon resonance immunoassay. Biosens Bioelectron 22:2724–2729CrossRefPubMedPubMedCentralGoogle Scholar
  280. Skottrup PD, Nicolaisen M, Justesen AF (2008) Towards on-site pathogen detection using antibody-based sensors. Biosens Bioelectron 24:339–348CrossRefPubMedPubMedCentralGoogle Scholar
  281. Song T, Zhu X, Zhou S, Yang G, Gan W, Yuan Q (2015) DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution. Appl Surf Sci 347:505–513CrossRefGoogle Scholar
  282. Song L, Mao K, Zhou X, Hu J (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 146:285–290CrossRefPubMedPubMedCentralGoogle Scholar
  283. Songa EA, Okonkwo JO (2016) Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: a review. Talanta 155:289–304CrossRefPubMedPubMedCentralGoogle Scholar
  284. Sotiropoulou S, Fournier D, Chaniotakis NA (2005) Genetically engineered acetylcholinesterase-based biosensor for attomolar detection of dichlorvos. Biosens Bioelectron 20:2347–2352CrossRefPubMedPubMedCentralGoogle Scholar
  285. Srivastava AK, Dev A, Karmakar SJECL (2018) Nanosensors and nanobiosensors in food and agriculture. Environ Chem Lett 16:161–182CrossRefGoogle Scholar
  286. Steffens C, Steffens J, Marcia Graboski A, Manzoli A, Lima Leite F (2017) 16 – nanosensors for detection of pesticides in water. In: Grumezescu AM (ed) New pesticides and soil sensors. Academic, Cambridge, pp 595–635CrossRefGoogle Scholar
  287. Stiner L, Halverson LJ (2002) Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl Environ Microbiol 68:1962–1971CrossRefPubMedPubMedCentralGoogle Scholar
  288. Strosnider HM (2003) Whole-cell bacterial biosensors and the detection of bioavailable arsenic. In: National network of environmental management studies. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  289. Su Y-T, Lan G-Y, Chen W-Y, Chang H-T (2010) Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem 82:8566–8572CrossRefPubMedPubMedCentralGoogle Scholar
  290. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799CrossRefPubMedPubMedCentralGoogle Scholar
  291. Sun C, Sun R, Chen Y, Tong Y, Zhu J, Bai H, Zhang S, Zheng H, Ye H (2018) Utilization of aptamer-functionalized magnetic beads for highly accurate fluorescent detection of mercury (II) in environment and food. Sensors Actuators B Chem 255:775–780CrossRefGoogle Scholar
  292. Sundarmurugasan R, Gumpu MB, Ramachandra BL, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2016) Simultaneous detection of monocrotophos and dichlorvos in orange samples using acetylcholinesterase–zinc oxide modified platinum electrode with linear regression calibration. Sensors Actuators B Chem 230:306–313CrossRefGoogle Scholar
  293. Suresh S, Periasamy M (2014) Recent trends in nanobiosensors and their applications -a review. Rev Adv Mater Sci 36:62–69Google Scholar
  294. Suri CR, Kaur J, Gandhi S, Shekhawat GS (2008) Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotechnology 19(23):235502CrossRefGoogle Scholar
  295. Tahirbegi IB, Ehgartner J, Sulzer P, Zieger S, Kasjanow A, Paradiso M, Strobl M, Bouwes D, Mayr T (2017) Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence. Biosens Bioelectron 88:188–195CrossRefPubMedPubMedCentralGoogle Scholar
  296. Talan A, Mishra A, Eremin SA, Narang J, Kumar A, Gandhi S (2018) Ultrasensitive electrochemical immuno-sensing platform based on gold nanoparticles triggering chlorpyrifos detection in fruits and vegetables. Biosens Bioelectron 105:14–21CrossRefPubMedPubMedCentralGoogle Scholar
  297. Tan L, Chen Z, Zhao Y, Wei X, Li Y, Zhang C, Wei X, Hu X (2016) Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates. Biosens Bioelectron 85:414–421CrossRefPubMedPubMedCentralGoogle Scholar
  298. Tecon R, Van der Meer JR (2008) Bacterial Biosensors for measuring availability of environmental pollutants. Sensors (Basel, Switzerland) 8:4062–4080CrossRefGoogle Scholar
  299. Tekaya N, Saiapina O, Ben Ouada H, Lagarde F, Namour P, Ben Ouada H, Jaffrezic-Renault N (2014) Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in arthrospira platensis. J Environ Prot 5:441–453CrossRefGoogle Scholar
  300. Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131CrossRefPubMedPubMedCentralGoogle Scholar
  301. Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96:4698–4703CrossRefPubMedPubMedCentralGoogle Scholar
  302. Touhami A (2014) Biosensors and nanobiosensors: design and applications. In: Seifalian PA (ed) Nanomedicine. One Central Press (OCP), University College London, Achala de Mel University College London, Deepak M. Kalaskar University College London, London, pp 374–403Google Scholar
  303. Touloupakis E, Giannoudi L, Piletsky SA, Guzzella L, Pozzoni F, Giardi MT (2005) A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water. Biosens Bioelectron 20:1984–1992CrossRefPubMedPubMedCentralGoogle Scholar
  304. Touloupakis E, Boutopoulos C, Buonasera K, Zergioti I, Giardi MT (2012) A photosynthetic biosensor with enhanced electron transfer generation realized by laser printing technology. Anal Bioanal Chem 402:3237–3244CrossRefPubMedPubMedCentralGoogle Scholar
  305. Tripathi D, Ahmad P, Sharma S, Chauhan D, Dubey NK (2017) Nanomaterials in plants, algae, and microorganisms. Academic Press, Elsevier Inc., pp 1–534.  https://doi.org/10.1016/C2016-0-00176-6
  306. Tsai H-C, Doong R-A (2005) Simultaneous determination of pH, urea, acetylcholine and heavy metals using array-based enzymatic optical biosensor. Biosens Bioelectron 20:1796–1804CrossRefPubMedPubMedCentralGoogle Scholar
  307. Tsopela A, Lale A, Vanhove E, Reynes O, Séguy I, Temple-Boyer P, Juneau P, Izquierdo R, Launay J (2014) Integrated electrochemical biosensor based on algal metabolism for water toxicity analysis. Biosens Bioelectron 61:290–297CrossRefPubMedPubMedCentralGoogle Scholar
  308. Tsopela A, Laborde A, Salvagnac L, Ventalon V, Bedel-Pereira E, Séguy I, Temple-Boyer P, Juneau P, Izquierdo R, Launay J (2016) Development of a lab-on-chip electrochemical biosensor for water quality analysis based on microalgal photosynthesis. Biosens Bioelectron 79:568–573CrossRefPubMedPubMedCentralGoogle Scholar
  309. Tucci M, Grattieri M, Schievano A, Cristiani P, Minteer SD (2019) Microbial amperometric biosensor for online herbicide detection: photocurrent inhibition of Anabaena variabilis. Electrochim Acta 302:102–108CrossRefGoogle Scholar
  310. Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem 2011:343125CrossRefGoogle Scholar
  311. Turner APF (2000) Biosensors--sense and sensitivity. Science 290:1315–1317CrossRefPubMedPubMedCentralGoogle Scholar
  312. Umasankar Y, Ramasamy RP (2013) Highly sensitive electrochemical detection of methyl salicylate using electroactive gold nanoparticles. Analyst 138:6623–6631CrossRefPubMedPubMedCentralGoogle Scholar
  313. Uniyal S, Sharma RK (2018) Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: a review of status and prospects. Biosens Bioelectron 116:37–50CrossRefPubMedPubMedCentralGoogle Scholar
  314. Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R (2009) Immobilization of acetylcholineesterase–choline oxidase on a gold–platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens Bioelectron 25:832–838CrossRefPubMedPubMedCentralGoogle Scholar
  315. Valera E, Ramón-Azcón J, Sanchez FJ, Marco MP, Rodríguez Á (2008) Conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles. Sensors Actuators B Chem 134:95–103CrossRefGoogle Scholar
  316. Vamvakaki V, Chaniotakis NA (2007) Pesticide detection with a liposome-based nano-biosensor. Biosens Bioelectron 22:2848–2853CrossRefPubMedPubMedCentralGoogle Scholar
  317. Védrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457–463CrossRefPubMedPubMedCentralGoogle Scholar
  318. Ventrella A, Catucci L, Placido T, Longobardi F, Agostiano A (2011) Biomaterials based on photosynthetic membranes as potential sensors for herbicides. Biosens Bioelectron 26:4747–4752CrossRefPubMedPubMedCentralGoogle Scholar
  319. Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24:1615–1620CrossRefPubMedPubMedCentralGoogle Scholar
  320. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24:2772–2777CrossRefPubMedPubMedCentralGoogle Scholar
  321. Vopálenská I, Váchová L, Palková Z (2015) New biosensor for detection of copper ions in water based on immobilized genetically modified yeast cells. Biosens Bioelectron 72:160–167CrossRefPubMedPubMedCentralGoogle Scholar
  322. Wade Elmer, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133CrossRefPubMedPubMedCentralGoogle Scholar
  323. Wan Jusoh W, Ling Shing W (2014) Exploring the potential of whole cell biosensor: a review in environmental applications. Int J Chem Environ Biol Sci 2:52–56Google Scholar
  324. Wang J, Chen L, Mulchandani A, Mulchandani P, Chen W (1999) Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11:866–869CrossRefGoogle Scholar
  325. Wang J, Krause R, Block K, Musameh M, Mulchandani A, Schöning MJ (2003) Flow injection amperometric detection of OP nerve agents based on an organophosphorus–hydrolase biosensor detector. Biosens Bioelectron 18:255–260CrossRefPubMedPubMedCentralGoogle Scholar
  326. Wang G, Lu Y, Yan C, Lu Y (2015) DNA-functionalization gold nanoparticles based fluorescence sensor for sensitive detection of Hg2+ in aqueous solution. Sensors Actuators B Chem 211:1–6CrossRefGoogle Scholar
  327. Wasito H, Fatoni A, Hermawan D, Susilowati SS (2019) Immobilized bacterial biosensor for rapid and effective monitoring of acute toxicity in water. Ecotoxicol Environ Saf 170:205–209CrossRefPubMedPubMedCentralGoogle Scholar
  328. Webster DP, TerAvest MA, Doud DFR, Chakravorty A, Holmes EC, Radens CM, Sureka S, Gralnick JA, Angenent LT (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324CrossRefPubMedPubMedCentralGoogle Scholar
  329. Wei M, Wang J (2015) A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sensors Actuators B Chem 211:290–296CrossRefGoogle Scholar
  330. Wei M, Zeng G, Lu Q (2014) Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta 181:121–127CrossRefGoogle Scholar
  331. Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver(i) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46:2596–2598CrossRefGoogle Scholar
  332. Willardson BM, Wilkins JF, Rand TA, Schupp JM, Hill KK, Keim P, Jackson PJ (1998) Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl Environ Microbiol 64:1006–1012CrossRefPubMedPubMedCentralGoogle Scholar
  333. Wong ELS, Chow E, Justin Gooding J (2007) The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem Commun 9:845–849CrossRefGoogle Scholar
  334. Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB (2011) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400:915–929CrossRefPubMedPubMedCentralGoogle Scholar
  335. Wu C-S, Khaing Oo MK, Fan X (2010) Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano 4:5897–5904CrossRefPubMedPubMedCentralGoogle Scholar
  336. Wu Y, Liu L, Zhan S, Wang F, Zhou P (2012) Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 137:4171–4178CrossRefPubMedPubMedCentralGoogle Scholar
  337. Wu L, Wang Z, Zhao S, Meng X, Song X, Feng J, Song S, Zhang H (2016) A metal–organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chem Eur J 22:477–480CrossRefPubMedPubMedCentralGoogle Scholar
  338. Xu L, Yin H, Ma W, Kuang H, Wang L, Xu C (2015) Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens Bioelectron 67:472–476CrossRefPubMedPubMedCentralGoogle Scholar
  339. Xu G, Huo D, Hou C, Zhao Y, Bao J, Yang M, Fa H (2018) A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–1052CrossRefPubMedPubMedCentralGoogle Scholar
  340. Yamashita T, Ookawa N, Ishida M, Kanamori H, Sasaki H, Katayose Y, Yokoyama H (2016) A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment. Sci Rep 6:38552CrossRefPubMedPubMedCentralGoogle Scholar
  341. Yang L, Wang G, Liu Y, Wang M (2013) Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta 113:135–141CrossRefPubMedPubMedCentralGoogle Scholar
  342. Yang W, Wei X, Fraiwan A, Coogan CG, Lee H, Choi S (2016) Fast and sensitive water quality assessment: a μL-scale microbial fuel cell-based biosensor integrated with an air-bubble trap and electrochemical sensing functionality. Sensors Actuators B Chem 226:191–195CrossRefGoogle Scholar
  343. Yang X, He Y, Wang X, Yuan R (2017) A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+. Appl Surf Sci 416:581–586CrossRefGoogle Scholar
  344. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516CrossRefGoogle Scholar
  345. Yildirim N (2016) Next generation biosensor systems for environmental water quality monitoring. Northeastern University, BostonGoogle Scholar
  346. Yildirim N, Long F, He M, Shi H-C, Gu AZ (2014) A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ Sci Process Impacts 16:1379–1386CrossRefPubMedPubMedCentralGoogle Scholar
  347. Yoo M-S, Shin M, Kim Y, Jang M, Choi Y-E, Park SJ, Choi J, Lee J, Park C (2017) Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 175:269–274CrossRefPubMedPubMedCentralGoogle Scholar
  348. Yüce M, Nazır H, Dönmez G (2010a) Using of Rhizopus arrhizus as a sensor modifying component for determination of Pb(II) in aqueous media by voltammetry. Bioresour Technol 101:7551–7555CrossRefPubMedPubMedCentralGoogle Scholar
  349. Yüce M, Nazır H, Dönmez G (2010b) A voltammetric Rhodotorula mucilaginosa modified microbial biosensor for Cu(II) determination. Bioelectrochemistry 79:66–70CrossRefPubMedPubMedCentralGoogle Scholar
  350. Yunus S, Jonas AM, Lakard B (2013) Potentiometric biosensors. In: Roberts GCK (ed) Encyclopedia of biophysics. Springer, Berlin/Heidelberg, pp 1941–1946CrossRefGoogle Scholar
  351. Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, Ishmuchametova DG, Fakhrullin RF (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal Methods 3:509–513CrossRefGoogle Scholar
  352. Zhai J, Cui H, Yang R (1997) DNA based biosensors. Biotechnol Adv 15:43–58CrossRefPubMedPubMedCentralGoogle Scholar
  353. Zhang X, Li Y, Su H, Zhang S (2010) Highly sensitive and selective detection of Hg2+ using mismatched DNA and a molecular light switch complex in aqueous solution. Biosens Bioelectron 25:1338–1343CrossRefPubMedPubMedCentralGoogle Scholar
  354. Zhang Y, Arugula MA, Wales M, Wild J, Simonian AL (2015) A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides. Biosens Bioelectron 67:287–295CrossRefPubMedPubMedCentralGoogle Scholar
  355. Zhang C, Zhou Y, Tang L, Zeng G, Zhang J, Peng B, Xie X, Lai C (2016) Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and square wave anodic stripping voltammetry. Nanomaterials 6:7CrossRefGoogle Scholar
  356. Zhang Y, Chen M, Li H, Yan F, Pang P, Wang H, Wu Z, Yang W (2017) A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sensors Actuators B Chem 244:606–615CrossRefGoogle Scholar
  357. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, Tan W (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci U S A 101:15027–15032CrossRefPubMedPubMedCentralGoogle Scholar
  358. Zhao X-H, Kong R-M, Zhang X-B, Meng H-M, Liu W-N, Tan W, Shen G-L, Yu R-Q (2011) Graphene–DNAzyme based biosensor for amplified fluorescence “Turn-On” detection of Pb2+ with a high selectivity. Anal Chem 83:5062–5066CrossRefPubMedPubMedCentralGoogle Scholar
  359. Zhao Y, Zhang W, Lin Y, Du D (2013) The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5:1121–1126CrossRefPubMedPubMedCentralGoogle Scholar
  360. Zhao Y, Liu L, Kong D, Kuang H, Wang L, Xu C (2014) Dual amplified electrochemical immunosensor for highly sensitive detection of Pantoea stewartii sbusp. stewartii. ACS Appl Mater Interfaces 6:21178–21183CrossRefPubMedPubMedCentralGoogle Scholar
  361. Zheng Y, Yang C, Pu W, Zhang J (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta 166:21–26CrossRefGoogle Scholar
  362. Zhou B, Yang X-Y, Wang Y-S, Yi J-C, Zeng Z, Zhang H, Chen Y-T, Hu X-J, Suo Q-L (2019) Label-free fluorescent aptasensor of Cd2+ detection based on the conformational switching of aptamer probe and SYBR green I. Microchem J 144:377–382CrossRefGoogle Scholar
  363. Zhu Y, Zeng G-m, Zhang Y, Tang L, Chen J, Cheng M, Zhang L-h, He L, Guo Y, He X-x, Lai M-y, He Y-b (2014) Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead (II) detection based on Pb2+-induced G-rich DNA conformation. Analyst 139:5014–5020CrossRefPubMedPubMedCentralGoogle Scholar
  364. Zhu Y-F, Wang Y-S, Zhou B, Yu J-H, Peng L-L, Huang Y-Q, Li X-J, Chen S-H, Tang X, Wang X-F (2017) A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal Bioanal Chem 409:4951–4958CrossRefPubMedPubMedCentralGoogle Scholar
  365. Zhu Q, Liu L, Xing Y, Zhou X (2018) Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions. J Hazard Mater 355:50–55CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mojtaba Salouti
    • 1
  • Fateme Khadivi Derakhshan
    • 2
  1. 1.Biology Research Center, Zanjan BranchIslamic Azad UniversityZanjanIran
  2. 2.Department of Biology, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations