Advertisement

A Missing Dilemma on Nanoparticle Producer Microorganisms

  • R. Soner Silme
  • Ömür BaysalEmail author
Chapter

Abstract

The development of eco-friendly biological methods in material synthesis has been reported with chemically well-defined variety of inorganic nanoparticles (NP) that are produced by using various microorganisms. In last decades, lots of research articles have suggested required conditions to control and particle stability on biosynthesized nanoparticles, besides their applications in a wide spectrum of potential fields including target oriented drug delivery, cancer therapy, gene therapy and DNA based diagnosis, using of antimicrobial agents, biosensors, enhancing enzymatic reaction capacity with advanced medical visualization technology. Even the present limitations and future prospects for the production of inorganic nanoparticles by microorganisms are dramatically studied, their disadvantages in practice concerning their negative effects on micro- and macroorganisms are attracting the attention of researchers. As another concept, the behaviours of microorganism change depending on available concentration of nanomolecules containing inorganic chemical structures in environment affecting their antibacterial compounds secretion. The review highlights particularly ignored or missed cases on the usage of nanoparticle producer microorganisms. We briefly discuss here, as an another concept; enhancing anti-phytopathogen potential capacity of soil can negatively be affected by NP synthesizing microorganisms that may drastically impair microflora balance and its own biocontrol capacity besides in contrary to their expected positive advantages in purpose of their antimicrobial property.

Keywords

Biological nanoparticles Microorganisms Biocontrol Ecological approach 

References

  1. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15):1231–1234.  https://doi.org/10.1016/j.matlet.2009.02.042CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109.  https://doi.org/10.1021/ja027296oCrossRefPubMedGoogle Scholar
  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318.  https://doi.org/10.1016/S0927-7765(02)00174-1CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824–828.  https://doi.org/10.1088/0957-4484/14/7/323CrossRefGoogle Scholar
  5. Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28(35):5381–5389.  https://doi.org/10.1016/j.biomaterials.2007.07.051CrossRefPubMedGoogle Scholar
  6. Arakaki A, Shibusawa M, Hosokawa M, Matsunaga T (2010) Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification. Appl Environ Microbiol 76(5):1480–1485.  https://doi.org/10.1128/AEM.02124-09CrossRefPubMedPubMedCentralGoogle Scholar
  7. Babu MMG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B Biointerfaces 74(1):191–195.  https://doi.org/10.1016/j.colsurfb.2009.07.016CrossRefGoogle Scholar
  8. Bai HJ, Zhang ZM (2009) Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9–10):764–766.  https://doi.org/10.1016/j.matlet.2008.12.050CrossRefGoogle Scholar
  9. Bai HJ, Zhang ZM, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139.  https://doi.org/10.1007/s10529-006-9063-1CrossRefPubMedGoogle Scholar
  10. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70(1):142–146.  https://doi.org/10.1016/j.colsurfb.2008.12.025CrossRefPubMedGoogle Scholar
  11. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14(22):3303–3305.  https://doi.org/10.1039/B407904CCrossRefGoogle Scholar
  12. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589.  https://doi.org/10.1039/B503008KCrossRefGoogle Scholar
  13. Bansal V, Poddar P, Ahmad A, Sastry M (2006) Room temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128(36):11958–11963.  https://doi.org/10.1021/ja063011mCrossRefPubMedGoogle Scholar
  14. Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6(9):3534–3541.  https://doi.org/10.1016/j.actbio.2010.03.030CrossRefPubMedGoogle Scholar
  15. Baysal Ö, Silme RS (2018) The ecological role of biodiversity for crop protection. In: Dunea D (ed) Plant competition in cropping systems. Intech, New York.  https://doi.org/10.5772/intechopen.78228CrossRefGoogle Scholar
  16. Baysal Ö, Calışkan M, Yeşilova Ö (2008) An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis lycopersici. Physiol Mol Plant Pathol 73:25–32.  https://doi.org/10.1016/j.pmpp.2008.11.002CrossRefGoogle Scholar
  17. Baysal Ö, Lai D, Xu HH, Siragusa M, Calışkan M, Carimi F, Teixeira da Silva JA, Tor M (2013) A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS One 8:e53182.  https://doi.org/10.1371/journal.pone.0053182CrossRefPubMedPubMedCentralGoogle Scholar
  18. Benadiba M, Maor Y (2016) Importance of ABC transporters in drug development. Curr Pharm Des 22:5817–5829.  https://doi.org/10.2174/1381612822666160810120359CrossRefPubMedGoogle Scholar
  19. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47(2):160–164.  https://doi.org/10.1016/j.colsurfb.2005.11.026CrossRefPubMedGoogle Scholar
  20. Bose S, Hochella MF, Gorby YA, Kennedy DW, McCready DE, Madden AS, Lower BH (2009) Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochim Cosmochim Acta 73(4):962–976.  https://doi.org/10.1016/j.gca.2008.11.031CrossRefGoogle Scholar
  21. Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnsonc W, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222.  https://doi.org/10.1016/j.scitotenv.2012.04.049CrossRefPubMedGoogle Scholar
  22. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48.  https://doi.org/10.1016/j.colsurfb.2010.10.035CrossRefPubMedGoogle Scholar
  23. Chunjaturas W, Ferguson JA, Rattanapichai W, Sadowsky MJ, Sajjaphan K (2014) Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA. World J Microbiol Biotechnol 30:2119–2124.  https://doi.org/10.1007/s11274-014-1633-0CrossRefPubMedGoogle Scholar
  24. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B et al (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8:e57189.  https://doi.org/10.1371/journal.pone.0057189CrossRefPubMedPubMedCentralGoogle Scholar
  25. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597CrossRefGoogle Scholar
  26. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91CrossRefGoogle Scholar
  27. Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano-and microparticles in the plant environment. Environ Sci Technol 47:4734–4742.  https://doi.org/10.1021/es304736yCrossRefPubMedGoogle Scholar
  28. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of haemoglobin. Electrochem Commun 9(5):1165–1170.  https://doi.org/10.1016/j.elecom.2007.01.007CrossRefGoogle Scholar
  29. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828.  https://doi.org/10.1039/c0em00611dCrossRefPubMedGoogle Scholar
  30. Eymard-Vernain E, Luche S, Rabilloud T, Lelong C (2018) Impact of nanoparticles on the Bacillus subtilis (3610) competence. Sci Rep 8:2978.  https://doi.org/10.1038/s41598-018-21402-0CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed-Nanotechnol 6(1):e103–e109.  https://doi.org/10.1016/j.nano.2009.04.006CrossRefGoogle Scholar
  32. Fernandez-Moure JS, Evangelopoulos M, Colvill K, Van Eps JL, Tasciotti E (2017) Nanoantibiotics: a new paradigm for the treatment of surgical infection. Nanomed (Lond) 12:1319–1334.  https://doi.org/10.2217/nnm-2017-0401CrossRefGoogle Scholar
  33. Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8:e84441.  https://doi.org/10.1371/journal.pone.0084441CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664.  https://doi.org/10.3390/s100100625CrossRefPubMedGoogle Scholar
  35. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758.  https://doi.org/10.1128/AEM.00941-12CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ge Y, Priester JH, Van De Werfhorst LC, Schimel JP, Holden PA (2013) Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities. Environ Sci Technol 47:14411–14417.  https://doi.org/10.1021/es403385cCrossRefPubMedGoogle Scholar
  37. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140.  https://doi.org/10.1016/j.hydromet.2006.03.019CrossRefGoogle Scholar
  38. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74(1):328–335.  https://doi.org/10.1016/j.colsurfb.2009.07.048CrossRefPubMedGoogle Scholar
  39. Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558.  https://doi.org/10.1002/jpln.200900358CrossRefGoogle Scholar
  40. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61(18):3984–3987.  https://doi.org/10.1016/j.matlet.2007.01.018CrossRefGoogle Scholar
  41. Honek JF (2013) Bionanotechnology and bionanomaterials: John Honek explains the good things that can come in very small packages. BMC Biochem 14:29.  https://doi.org/10.1186/1471-2091-14-29CrossRefPubMedPubMedCentralGoogle Scholar
  42. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release: Off J Control Release Soc 156:128–145.  https://doi.org/10.1016/j.jconrel.2011.07.002CrossRefGoogle Scholar
  43. Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560.  https://doi.org/10.1007/s10529-015-2026-7CrossRefPubMedGoogle Scholar
  44. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67(3–4):1003–1006.  https://doi.org/10.1016/j.saa.2006.09.028CrossRefGoogle Scholar
  45. Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B Biointerfaces 75(1):330–334.  https://doi.org/10.1016/j.colsurfb.2009.09.005CrossRefPubMedGoogle Scholar
  46. Jha AK, Prasad K, Prasad K (2009a) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43(3):303–306.  https://doi.org/10.1016/j.bej.2008.10.016CrossRefGoogle Scholar
  47. Jha AK, Prasad K, Kulkarni AR (2009b) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B Biointerfaces 71(2):226–229.  https://doi.org/10.1016/j.colsurfb.2009.02.007CrossRefPubMedGoogle Scholar
  48. Jośko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99.  https://doi.org/10.1016/j.chemosphere.2013.02.048CrossRefPubMedGoogle Scholar
  49. Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017.  https://doi.org/10.1016/j.matlet.2010.12.056CrossRefGoogle Scholar
  50. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153.  https://doi.org/10.1016/j.colsurfb.2008.02.018CrossRefPubMedGoogle Scholar
  51. Kalishwaralal K, Deepak V, Ram Kumar Pandian S, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathana S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77(2):257–262.  https://doi.org/10.1016/j.colsurfb.2010.02.007CrossRefPubMedGoogle Scholar
  52. Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1056CrossRefGoogle Scholar
  53. Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6(6):139–140CrossRefGoogle Scholar
  54. Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2C on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27:49–55.  https://doi.org/10.1080/02757540.2010.529074CrossRefGoogle Scholar
  55. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007a) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53(1):186–192.  https://doi.org/10.1016/j.electacta.2007.02.073CrossRefGoogle Scholar
  56. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007b) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653.  https://doi.org/10.1016/j.jbiotec.2006.11.014CrossRefPubMedGoogle Scholar
  57. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588.  https://doi.org/10.1002/bit.10233CrossRefPubMedGoogle Scholar
  58. Kumar SA, Ansary AA, Abroad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194.  https://doi.org/10.1166/jbn.2007.027CrossRefGoogle Scholar
  59. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747.  https://doi.org/10.1126/science.290.5497.1744CrossRefPubMedGoogle Scholar
  60. Lee JH, Han J, Choi H, Hur HG (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68(10):1898–1905.  https://doi.org/10.1016/j.chemosphere.2007.02.062CrossRefPubMedGoogle Scholar
  61. Lefèvre CT, Abreu F, Schmidt ML, Lins U, Frankel RB, Hedlund BP, Bazylinski DA (2010a) Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl Environ Microbiol 76(11):3740–3743.  https://doi.org/10.1128/AEM.03018-09CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lefèvre CT, Abreu F, Lins U, Bazylinski DA (2010b) Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behaviour. Appl Environ Microbiol 76(10):3220–3227.  https://doi.org/10.1128/AEM.00408-10CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lengke MF, Fleet ME, Southam G (2006a) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22(6):2780–2787.  https://doi.org/10.1021/la052652cCrossRefPubMedGoogle Scholar
  64. Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006b) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40(20):6304–6309.  https://doi.org/10.1021/es061040rCrossRefPubMedGoogle Scholar
  65. Li Y, Cu YT, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23:885–889.  https://doi.org/10.1038/nbt1106CrossRefPubMedGoogle Scholar
  66. Li W, Yu L, Zhou P, Zhu M (2007) A Magnetospirillum strain WM-1 from a freshwater sediment with intracellular magnetosomes. World J Microbiol Biotechnol 23(10):1489–1492CrossRefGoogle Scholar
  67. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974.  https://doi.org/10.1155/2011/270974CrossRefGoogle Scholar
  68. Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443.  https://doi.org/10.1002/smll.201001402CrossRefPubMedGoogle Scholar
  69. Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64(11):4607–4609CrossRefGoogle Scholar
  70. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160.  https://doi.org/10.1021/cm902527nCrossRefGoogle Scholar
  71. McLamore ES, Diggs A, Calvo Marzal P, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant J 63:1004–1016.  https://doi.org/10.1111/j.1365-313X.2010.04300.xCrossRefPubMedGoogle Scholar
  72. Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107.  https://doi.org/10.1007/s00253-014-6296-0CrossRefPubMedGoogle Scholar
  73. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881.  https://doi.org/10.1371/journal.pone.0097881CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471.  https://doi.org/10.3389/fpls.2017.00471CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mohammed Fayaz A, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloids Surf B Biointerfaces 74(1):123–126.  https://doi.org/10.1016/j.colsurfb.2009.07.002CrossRefPubMedGoogle Scholar
  76. Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, Dyčka F, Šebela M, Prucek R, Tomanec O, Zbořil R (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13:65–71.  https://doi.org/10.1038/s41565-017-0013-yCrossRefPubMedGoogle Scholar
  77. Pandian SRK, Deepak V, Kalishwaralal K, Muniyandi J, Rameshkumar N, Gurunathan S (2009) Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: a green chemistry approach. Colloids Surf B Biointerfaces 74(1):266–273.  https://doi.org/10.1016/j.colsurfb.2009.07.029CrossRefGoogle Scholar
  78. Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA (2014) The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp 457:263–274.  https://doi.org/10.1016/j.colsurfa.2014.05.057CrossRefGoogle Scholar
  79. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545.  https://doi.org/10.1002/ps.1732CrossRefPubMedGoogle Scholar
  80. Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979.  https://doi.org/10.1016/j.gca.2009.10.035CrossRefGoogle Scholar
  81. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, Cham. ISBN: 978-3-319-42989-2CrossRefGoogle Scholar
  82. Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interface Sci 342(1):68–72.  https://doi.org/10.1016/j.jcis.2009.10.003CrossRefPubMedGoogle Scholar
  83. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250.  https://doi.org/10.1007/s11671-007-9060-xCrossRefPubMedCentralGoogle Scholar
  84. Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20(16):6827–6833.  https://doi.org/10.1021/la049244dCrossRefPubMedGoogle Scholar
  85. Sanghi R, Verma P (2009) A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J 155(3):886–891.  https://doi.org/10.1016/j.cej.2009.08.006CrossRefGoogle Scholar
  86. Sanyal A, Rautaray D, Bansal V, Ahmad A, Sastry M (2005) Heavy-metal remediation by a fungus as a means of production of lead and cadmium carbonate crystals. Langmuir 21(16):7220–7224.  https://doi.org/10.1021/la047132gCrossRefPubMedGoogle Scholar
  87. Sathiyavimal S, Vasantharaj S, Bharathi D, Saravanan M, Manikandan E, Kumar SS, Pugazhendhi A (2018) Biogenesis of copper oxide nanoparticles (CuONPs) using Sida acuta and their incorporation over cotton fabrics to prevent the pathogenicity of Gram negative and Gram positive bacteria. J Photochem Photobiol B Biol 188:126–134.  https://doi.org/10.1016/j.jphotobiol.2018.09.014CrossRefGoogle Scholar
  88. Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330.  https://doi.org/10.1016/j.envpol.2014.10.021CrossRefPubMedGoogle Scholar
  89. Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys 78A(1):101–105Google Scholar
  90. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. Small 1(5):517–520.  https://doi.org/10.1002/smll.200400053CrossRefPubMedGoogle Scholar
  91. Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001.  https://doi.org/10.1088/1748-9326/9/2/024001CrossRefGoogle Scholar
  92. Shahrokh S, Hosseinkhani B, Emtiazi G (2014) The impact of nano-silver on bacterial aerobic nitrate reductase. J Bioprocess Biotechnol 4:162.  https://doi.org/10.4172/2155-9821.1000162CrossRefGoogle Scholar
  93. Sharma N, Pinnaka AK, Raje M, Fnu A, Bhattacharyya MS, Choudhury AR (2012) Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories 11:86.  https://doi.org/10.1186/1475-2859-11-86CrossRefGoogle Scholar
  94. Sharon M, Choudhary AK, Kuma R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92Google Scholar
  95. Shen Z, Chen Z, Hou Z, Li T, Lu X (2015) Ecotoxicological effect of zinc oxide nanoparticles on soil microorganisms. Front Environ Sci Eng 9:912–918.  https://doi.org/10.1007/s11783-015-0789-7CrossRefGoogle Scholar
  96. Sheng Z, Liu Y (2011) Effects of silver nanoparticles on wastewater biofilms. Water Res 45:6039–6050.  https://doi.org/10.1016/j.watres.2011.08.065CrossRefPubMedGoogle Scholar
  97. Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soils Sci Soc Am J 75:365–377.  https://doi.org/10.1016/j.envpol.2016.08.016CrossRefGoogle Scholar
  98. Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723.  https://doi.org/10.1007/s11356-015-4171-xCrossRefGoogle Scholar
  99. Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535.  https://doi.org/10.1016/j.jhazmat.2014.10.004CrossRefPubMedGoogle Scholar
  100. Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf B Biointerface 57:97–101.  https://doi.org/10.1016/j.colsurfb.2007.01.010CrossRefGoogle Scholar
  101. Singh P, Kim YJ, Singh H, Mathiyalagan R, Wang C, Yang DC (2015a) Biosynthesis of anisotropic silver nanoparticles by Bhargavaea indica and their synergistic effect with antibiotics against pathogenic microorganisms. J Nanomater 2015:10.  https://doi.org/10.1155/2015/234741CrossRefGoogle Scholar
  102. Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh Mel A, Yang DC (2015b) Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomedicine 10:2567–2577.  https://doi.org/10.2147/IJN.S72313CrossRefPubMedPubMedCentralGoogle Scholar
  103. Singh P, Kim YJ, Zhang D, Yang DC (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599.  https://doi.org/10.1016/j.tibtech.2016.02.006CrossRefPubMedGoogle Scholar
  104. Singh P, Singh H, Kim YJ, Mathiyalagan R, Wang C, Yang DC (2016b) Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications. Enzym Microb Technol 86:75–83.  https://doi.org/10.1016/j.enzmictec.2016.02.005CrossRefGoogle Scholar
  105. Singh P, Garg A, Pandit S, Mokkapati V, Mijakovic I (2018) Antimicrobial effects of biogenic nanoparticles. Nanomaterials (Basel, Switzerland) 8(12):1009.  https://doi.org/10.3390/nano8121009CrossRefPubMedCentralGoogle Scholar
  106. Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284.  https://doi.org/10.1016/j.biortech.2010.12.040CrossRefPubMedGoogle Scholar
  107. Slawson RM, Lohmeier-Vogel EM, Lee H, Trevors JT (1994) Silver resistance in Pseudomonas stutzeri. Biometals 7:30–40CrossRefGoogle Scholar
  108. Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162(3):989–996.  https://doi.org/10.1016/j.cej.2010.07.006CrossRefGoogle Scholar
  109. Sunkar S, Nachiyar CV (2012) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Glob J Med Res 12:43–49Google Scholar
  110. Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152.  https://doi.org/10.1016/j.actbio.2011.01.023CrossRefPubMedGoogle Scholar
  111. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559.  https://doi.org/10.1016/j.chembiol.2004.08.022CrossRefPubMedGoogle Scholar
  112. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300.  https://doi.org/10.1038/nnano.2007.108CrossRefPubMedPubMedCentralGoogle Scholar
  113. VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8:358–364.  https://doi.org/10.1089/ind.2012.0026CrossRefGoogle Scholar
  114. Videira M, Reis RL, Brito MA (2014) Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance. Biochim Biophys Acta 1846:312–325.  https://doi.org/10.1016/j.bbcan.2014.07.011CrossRefPubMedGoogle Scholar
  115. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phanerochaete chrysosporium. Colloids Surf B Biointerfaces 53(1):55–59.  https://doi.org/10.1016/j.colsurfb.2006.07.014CrossRefPubMedGoogle Scholar
  116. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418.  https://doi.org/10.1016/j.matlet.2006.07.042CrossRefGoogle Scholar
  117. Vittori Antisari L, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94.  https://doi.org/10.1016/j.soilbio.2013.01.016CrossRefGoogle Scholar
  118. Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulphide materials. J Magn Magn Mater 203(1–3):69–72.  https://doi.org/10.1016/S0304-8853(99)00191-2CrossRefGoogle Scholar
  119. Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687–12696.  https://doi.org/10.1021/es301521pCrossRefPubMedGoogle Scholar
  120. Yan S, He W, Sun C, Zhang X, Zhao H, Li Z, Zhou W, Tian X, Sun X, Han X (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigments 80(2):254–258.  https://doi.org/10.1016/j.dyepig.2008.06.010CrossRefGoogle Scholar
  121. Yang L, Li W, Kirberger M, Liao W, Ren J (2016) Design of nanomaterial based systems for novel vaccine development. Biomater Sci 4:785–802.  https://doi.org/10.1039/c5bm00507hCrossRefPubMedGoogle Scholar
  122. Yu JX, Li TH (2011) Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings. Cell Biosci 1:19CrossRefGoogle Scholar
  123. Zavaglia CA, Prado da Silva MH (2016) Biomaterials. Ref Module Mater Sci Mater Eng.  https://doi.org/10.1016/B978-0-12-803581-8.04109-6
  124. Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci Processes Impacts 15:260–266.  https://doi.org/10.1039/C2EM30610GCrossRefGoogle Scholar
  125. Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of au-ag alloy nanoparticles. Sensors Actuators B Chem 148(1):247–252.  https://doi.org/10.1016/j.snb.2010.04.031CrossRefGoogle Scholar
  126. Zhou W, He W, Zhong S, Wang Y, Zhao H, Li Z, Yan S (2009a) Biosynthesis and magnetic properties of mesoporous Fe3O4 composites. J Magn Magn Mater 321(8):1025–1028.  https://doi.org/10.1016/j.jmmm.2008.10.007CrossRefGoogle Scholar
  127. Zhou W, He W, Zhang X, Yan S, Sun X, Tian X, Han X (2009b) Biosynthesis of iron phosphate nanopowders. Powder Technol 194(1–2):106–108.  https://doi.org/10.1016/j.powtec.2009.03.034CrossRefGoogle Scholar
  128. Zhu K, Pan H, Li J, Yu-Zhang K, Zhang SD, Zhang WY, Zhou K, Yue H, Pan Y, Xiao T, Wu LF (2010) Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res Microbiol 161(4):276–283.  https://doi.org/10.1016/j.resmic.2010.02.003CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Center for Research and Practice in Biotechnology and Genetic EngineeringIstanbul UniversityIstanbulTurkey
  2. 2.Faculty of Science, Department of Molecular Biology and Genetics/Molecular Microbiology UnitMuğla Sıtkı Koçman UniversityMuğlaTurkey

Personalised recommendations