Advertisement

Recent Developments in Nanocarrier-Based Nutraceuticals for Therapeutic Purposes

  • Ambreen Bano
  • Anmol Gupta
  • Swati Sharma
  • Rolee SharmaEmail author
Chapter
  • 48 Downloads

Abstract

Modern-day agriculture is evolving from the traditional production of raw food products to advances in novel food engineering technologies that ensure purity and functionality including health-specific products. Plants are the ultimate source of food and nutrition. Nutraceuticals are the functional foods which can provide health and medicinal benefits or can be used for prevention and treatment of various diseases along with providing basic nutrition. Nutraceuticals can be purified food nutrients, dietary supplements, herbs, cereals, milk, soups, or herbal products to genetically engineered foods enriched with vitamins and essential minerals. The components may also include phytochemicals, probiotics, vitamins, antioxidants, and essential minerals that are derived from plant and/or microbial sources. Recently, nanoparticle pharmaceutical drug delivery systems came into picture. These nanocarriers can also be used to enhance the potential of nano-formulated nutraceuticals. Presently, many nanocarrier systems have been developed such as micelles, liposomes, polymeric nanoparticles, and nanoemulsions. Some of these pharmaceutical carriers have already made their way to clinical development, while others are still under the process of preclinical development. The development of multifunctional nutraceutical nanocarriers combining several useful properties in one particle can boost up the efficacy of many therapeutic and diagnostic protocols.

Keywords

Phytochemicals Nutraceuticals Nanocarriers Therapeutic 

Notes

Acknowledgments

We acknowledge the support from the DST-FIST, Department of Science and Technology as well as Uttar Pradesh Council of Science and Technology and Integral University, Lucknow.

References

  1. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15CrossRefGoogle Scholar
  2. Ai H, Jones SA, De Villiers MM et al (2003) Nano-encapsulation of furosemide microcrystals for controlled drug release. J Control Release 86(1):59–68PubMedCrossRefGoogle Scholar
  3. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750PubMedCrossRefGoogle Scholar
  4. Alonso MJ (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58(3):168–172PubMedCrossRefGoogle Scholar
  5. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17(5):1041–1054PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aouadi M, Tesz JG, Nicoloro SM et al (2009) Orally delivered siRNA targeting macrophage Map 4k4 suppresses systemic inflammation. Nature 458:1180–1184PubMedPubMedCentralCrossRefGoogle Scholar
  7. Arora D, Sharma N, Sharma V et al (2016) An update on polysaccharide-based nanomaterials for antimicrobial applications. Appl Microbiol Biotechnol 100(6):2603–2615PubMedCrossRefGoogle Scholar
  8. Aslan K, Wu M, Lakowicz JR et al (2007) Fluorescent core− shell Ag@ SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129(6):1524–1525PubMedPubMedCentralCrossRefGoogle Scholar
  9. Atwater HA (2007) The promise of plasmonics. Sci Am 296(4):56–62PubMedCrossRefGoogle Scholar
  10. Baert K, de Geest BG, de Rycke R (2015) β-glucan microparticles targeted to epithelial APN as oral antigen delivery system. J Control Release 220:149–159PubMedCrossRefGoogle Scholar
  11. Baran J, Allendorf DJ, Hong F et al (2007) Oral Beta-glucan adjuvant therapy converts nonprotective Th2 response to protective Th1 cell-mediated immune response in mammary tumor-bearing mice. Folia Histochem Cytobiol 45(2):107–114PubMedGoogle Scholar
  12. Bernkop Schnurch A, Walker G (2001) Multifunctional matrices for oral peptide delivery. Crit Rev Ther Drug Carrier Syst 18(5):459–501PubMedCrossRefGoogle Scholar
  13. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47(37):10182–10188CrossRefGoogle Scholar
  14. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33(9):941PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bohn JA, Miller JN (1995) (1-3)-beta-D-glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 28:3–141CrossRefGoogle Scholar
  16. Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128(2):99–112PubMedCrossRefGoogle Scholar
  17. Buckeridge MS, Rayon C, Urbanowicz B et al (2004) Mixed linkage (1→3), (1→4)-Beta-D-glucans of grasses. Cereal Chem 81:115CrossRefGoogle Scholar
  18. Chang M, Zhang F, Wei T et al (2016) Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J Drug Target 24(6):475–491PubMedCrossRefGoogle Scholar
  19. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280CrossRefGoogle Scholar
  20. Chauhan B, Kumar G, Kalam N (2013) Current concepts and prospects of herbal nutraceutical: a review. J Adv Pharm Technol Res 4(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen H, Weiss J, Shahidi F (2006a) Nanotechnology in nutraceuticals and functional foods. Food Technol 60(7):73–75Google Scholar
  22. Chen L, Remondetto GE, Subirade M (2006b) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283CrossRefGoogle Scholar
  23. Chen KJ, Liang HF, Chen HL et al (2012) A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano 7(1):438–446PubMedCrossRefGoogle Scholar
  24. Chen R, Wang S, Zhang J (2015) Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study. Drug Deliv 22(5):666–674PubMedCrossRefGoogle Scholar
  25. Chonn A, Semple SC, Cullis PR (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 267(26):18759–18765PubMedGoogle Scholar
  26. Chung HY, Cesari M, al AS (2009) Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res Rev 8(1):18–30PubMedCrossRefGoogle Scholar
  27. Cohen S, Bernstein H (1996) Microparticulate systems for the delivery of proteins and vaccines, vol 77. CRC Press, BrandGoogle Scholar
  28. Deng C, Jiang Y, Cheng R et al (2012) Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7(5):467–480CrossRefGoogle Scholar
  29. Díaz M, Vivas-Mejia P (2013) Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals 6(11):1361–1380PubMedCrossRefGoogle Scholar
  30. Du B, Lin C, Bian Z et al (2015) An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci Technol 41(1):49–59CrossRefGoogle Scholar
  31. Dudeja P, Gupta RK (2017) Nutraceuticals. In: Food safety in the 21st century. Academic Press, San Diego, pp 491–496CrossRefGoogle Scholar
  32. Durr NJ, Larson T, Smith DK (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7(4):941–945PubMedPubMedCentralCrossRefGoogle Scholar
  33. El-Gogary RI, Rubio N, Wang JT et al (2014) Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8:1384–1401PubMedCrossRefGoogle Scholar
  34. Gabizon AA (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16(2–3):285–294CrossRefGoogle Scholar
  35. Gao Y, Chen Y, Ji X et al (2011) Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 5(12):9788–9798PubMedCrossRefGoogle Scholar
  36. Goodridge HS, Reyes CN, Becker CA et al (2011) Activation of the innate immune receptor dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–U541PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053PubMedCrossRefGoogle Scholar
  38. Gregoriadis G (1988) Liposomes as a drug delivery system: optimization studies. In: Biotechnological applications of lipid microstructures. Springer, New York, pp 151–159CrossRefGoogle Scholar
  39. Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58(3):173–182PubMedCrossRefGoogle Scholar
  40. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007CrossRefGoogle Scholar
  41. Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phase—theory, experiment, and use. Angew Chem Int Ed 40(23):4330–4361CrossRefGoogle Scholar
  42. Huang H, Ostroff GR, Lee CK et al (2012) Relative contributions of dectin-1 and complement to immune responses to particulate beta-glucans. J Immunol 189(1):312–317PubMedPubMedCentralCrossRefGoogle Scholar
  43. Inoue Y, Yoshimura S, Tozuka Y et al (2007) Application of ascorbic acid 2-glucoside as a solubilizing agent for clarithromycin: solubilization and nanoparticle formation. Int J Pharm 331(1):38–45PubMedCrossRefGoogle Scholar
  44. Jiang Y, Lu H, Dag A et al (2016) Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 4(11):2017–2027CrossRefGoogle Scholar
  45. Kester M, Heakal Y, Fox T et al (2008) Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 8(12):4116–4121PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kommareddy S, Amiji M (2007) Poly (ethylene glycol)–modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine 3(1):32–42PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18PubMedCrossRefGoogle Scholar
  48. Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452(7183):76PubMedCrossRefGoogle Scholar
  49. Lasic DD, Martin FJ (1995) Stealth liposomes, vol 20. CRC Press, Boca RatonGoogle Scholar
  50. Lasic DD, Martin FJ, Gabizon A et al (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta (BBA)-Biomembranes 1070(1):187–192CrossRefGoogle Scholar
  51. Lo YL, Sung KH, Chiu CC et al (2013) Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery. Mol Pharm 10(2):664–676PubMedCrossRefGoogle Scholar
  52. Luo C, Sun J, Sun B et al (2014) Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci 35(11):556–566PubMedCrossRefGoogle Scholar
  53. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189CrossRefGoogle Scholar
  54. Maeda H, Wu J, Sawa T et al (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284PubMedCrossRefGoogle Scholar
  55. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):10CrossRefGoogle Scholar
  56. Matsumura Y (2007) Preclinical and clinical studies of anticancer drug-incorporated polymeric micelles. J Drug Target 15(7–8):507–517PubMedCrossRefGoogle Scholar
  57. Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60(8):899–914PubMedCrossRefGoogle Scholar
  58. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478PubMedCrossRefGoogle Scholar
  59. Morgan TT, Muddana HS, Altinoglu EI et al (2008) Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 8(12):4108–4115PubMedPubMedCentralCrossRefGoogle Scholar
  60. Müller RH (1991) Colloidal carriers for controlled drug delivery and targeting: modification, characterization and in vivo distribution. Taylor & Francis, Boca RatonGoogle Scholar
  61. Nagai H, Okazaki Y, Chew SH et al (2011) Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci 108:E1330–E1338PubMedCrossRefGoogle Scholar
  62. Narayanan S, Mony U, Vijaykumar DK et al (2015) Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine 11(6):1399–1406PubMedCrossRefGoogle Scholar
  63. Owen SC, Chan DP, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7(1):53–65CrossRefGoogle Scholar
  64. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193PubMedCrossRefGoogle Scholar
  65. Pang X, Yang X, Zhai G (2014) Polymer-drug conjugates: recent progress on administration routes. Expert Opin Drug Deliv 11(7):1075–1086PubMedCrossRefGoogle Scholar
  66. Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17:1044–1052PubMedCrossRefGoogle Scholar
  67. Perche F, Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013:1CrossRefGoogle Scholar
  68. Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79PubMedCrossRefGoogle Scholar
  69. Pillai JJ, Thulasidasan AKT, Anto RJ et al (2014) Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells. J Nanobiotechnol 12(1):25CrossRefGoogle Scholar
  70. Platt VM, Szoka FC Jr (2008) Anticancer therapeutics: targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor. Mol Pharm 5(4):474–486PubMedPubMedCentralCrossRefGoogle Scholar
  71. Plavcová Z, Šalamúnová P, Saloň I et al (2019) Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. Int J Pharm 568:118532PubMedCrossRefGoogle Scholar
  72. Popovtzer R, Agrawal A, Kotov NA et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596PubMedPubMedCentralCrossRefGoogle Scholar
  73. Porter CJ, Trevaskis NL, Charman WN (2007) Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 6(3):231PubMedCrossRefGoogle Scholar
  74. Porter CJ, Pouton CW, Cuine JF et al (2008) Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 60(6):673–691PubMedCrossRefGoogle Scholar
  75. Qian X, Peng XH, Ansari DO et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83PubMedCrossRefGoogle Scholar
  76. Rapoport NY, Kennedy AM, Shea JE et al (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138(3):268–276PubMedPubMedCentralCrossRefGoogle Scholar
  77. Rezvantalab S, Drude NI, Moraveji MK et al (2018) PLGA-based nanoparticles in cancer treatment. Front Pharmacol 9:1260PubMedPubMedCentralCrossRefGoogle Scholar
  78. Rolland A (ed) (1993) Pharmaceutical particulate carriers. Therapeutic applications, vol 61. Marcel Dekker, New YorkGoogle Scholar
  79. Saloň I, Hanuš J, Ulbrich P et al (2016) Suspension stability and diffusion properties of yeast glucan microparticles. Food Bioprod Process 99(Supplement C):128–135CrossRefGoogle Scholar
  80. Saneja A, Dhar Dubey R, Alam N et al (2014a) Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: an emerging strategy for cancer chemotherapy. Curr Cancer Drug Targets 14(5):419–433PubMedCrossRefGoogle Scholar
  81. Saneja A, Khare V, Alam N et al (2014b) Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv 11(1):121–138PubMedCrossRefGoogle Scholar
  82. Saneja A, Nehate C, Alam N (2016) Recent advances in chitosan-based nanomedicines for cancer chemotherapy. In: Chitin and chitosan for regenerative medicine. Springer, New Delhi, pp 229–259CrossRefGoogle Scholar
  83. Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556CrossRefGoogle Scholar
  84. Santos HA, Bimbo LM, Peltonen L et al (2015) Inorganic nanoparticles in targeted drug delivery and imaging. In: Targeted drug delivery: concepts and design. Springer, Cham, pp 571–613CrossRefGoogle Scholar
  85. Sercombe L, Veerati T, Moheimani F et al (2015) Advances and challenges of liposome assisted drug delivery. Front Pharmacol 6:286PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sharma S, Bano A, Pathak N (2019) Pre- and probiotics: using functional foods in the fight against microbial resistance to antibiotics. Antibacterial drug discovery to combat MDR, 978-981-13-9870-4, 459963_1_En, (18)Google Scholar
  87. Shimomur M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6(1):11–16CrossRefGoogle Scholar
  88. Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288PubMedCrossRefGoogle Scholar
  89. Soto ER, Ostroff GR (2008) Characterization of multilayered nanoparticles encapsulated in yeast cell wall particles for DNA delivery. Bioconjug Chem 19(4):840–848PubMedCrossRefGoogle Scholar
  90. Soto E, Kim YS, Lee J et al (2010) Glucan particle encapsulated rifampicin for targeted delivery to macrophages. Polymers 2:681–689CrossRefGoogle Scholar
  91. Soto ER, Caras AC, Kut LC et al (2012) Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv 13:14352Google Scholar
  92. Sutradhar KB, Amin ML (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014:1CrossRefGoogle Scholar
  93. Sutton D, Nasongkla N, Blanco E et al (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 24(6):1029–1046PubMedCrossRefGoogle Scholar
  94. Talelli M, Barz M, Rijcken CJ et al (2015) Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano Today 10(1):93–117PubMedPubMedCentralCrossRefGoogle Scholar
  95. Teong B, Lin CY, Chang SJ et al (2015) Enhanced anti-cancer activity by curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells. J Mater Sci Mater Med 26(1):49CrossRefGoogle Scholar
  96. Thanki K, Gangwal RP, Sangamwar AT et al (2013) Oral delivery of anticancer drugs: challenges and opportunities. J Control Release 170(1):15–40PubMedCrossRefGoogle Scholar
  97. Torchilin VP (1996) How do polymers prolong circulation time of liposomes? J Liposome Res 6(1):99–116CrossRefGoogle Scholar
  98. Torchilin VP (1998) Polymer-coated long-circulating microparticulate pharmaceuticals. J Microencapsul 15(1):1–19PubMedCrossRefGoogle Scholar
  99. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555PubMedCrossRefGoogle Scholar
  100. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1PubMedCrossRefGoogle Scholar
  101. Torchilin VP, Trubetskoy VS (1995) Which polymers can make nanoparticulate drug carriers long-circulating? Adv Drug Deliv Rev 16(2–3):141–155CrossRefGoogle Scholar
  102. Torchilin VP, Levchenko TS, Whiteman KR et al (2001) Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22(22):3035–3044PubMedCrossRefGoogle Scholar
  103. Upadhyay TK, Fatima N, Sharma D et al (2017) Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages. EXCLI 16:210–228Google Scholar
  104. Upadhyay TK, Fatima N, Sharma A et al (2019) Nano-rifabutin entrapment within glucan microparticles enhances protection against intracellular Mycobacterium tuberculosis. Artif Cells Nanomed Biotechnol 47(1):427–435PubMedCrossRefGoogle Scholar
  105. Van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3(2):205–216PubMedCrossRefGoogle Scholar
  106. Vecchione R, Quagliariello V, Calabria D et al (2016) Curcumin bioavailability from oil in water nano-emulsions: in vitro and in vivo study on the dimensional, compositional and interactional dependence. J Control Release 233:88–100PubMedCrossRefGoogle Scholar
  107. Wang L, Wang W, Rui Z et al (2016) The effective combination therapy against human osteosarcoma: doxorubicin plus curcumin co-encapsulated lipid-coated polymeric nanoparticulate drug delivery system. Drug Deliv 23(9):3200–3208PubMedCrossRefGoogle Scholar
  108. Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86(1):7–22PubMedCrossRefGoogle Scholar
  109. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421PubMedCrossRefGoogle Scholar
  110. Wing Shing Ho J, Wan Man Cheung M, Wai Lam Yu V (2012) Active phytochemicals from Chinese herbs as therapeutic agents for the heart. Cardiovasc Hematol Agents Med Chem 10(3):251–255CrossRefGoogle Scholar
  111. Woodle MC, Engbers CM, Zalipsky S (1994) New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug Chem 5(6):493–496PubMedCrossRefGoogle Scholar
  112. Xu P, Wang R, Li J et al (2015) PEG–PLGA–PLL nanoparticles in combination with gambogic acid for reversing multidrug resistance of K56 New amphipatic polymer-lipid conjugat2/A02 cells to daunorubicin. RSC Adv 5:61051–61059CrossRefGoogle Scholar
  113. Yallapu MM, Ebeling MC, Khan S (2013) Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther 12(8):1471–1480PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yan J, Allendorf DJ, Brandley B (2005) Yeast whole glucan particle (wgp) beta-glucan in conjunction with antitumour monoclonal antibodies to treat cancer. Expert Opin Biol Ther 5(5):691–702PubMedCrossRefGoogle Scholar
  115. Yu C, Nakshatri H, Irudayaraj J (2007) Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett 7(8):2300–2306PubMedCrossRefGoogle Scholar
  116. Yu M, Chen Z, Guo W et al (2015) Specifically targeted delivery of protein to phagocytic macrophages. Int J Nanomedicine 10:1743–1757PubMedPubMedCentralGoogle Scholar
  117. Zhao J (2007) Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol 1(1):75–97PubMedCrossRefGoogle Scholar
  118. Zhao J, Lee P, Wallace JM et al (2015a) Gold nanoparticles in cancer therapy: efficacy, biodistribution, and toxicity. Curr Pharm Des 21:4240–4251PubMedCrossRefGoogle Scholar
  119. Zhao T, Liu Y, Gao Z et al (2015b) Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater Sci Eng 53:196–203CrossRefGoogle Scholar
  120. Zhong Y, Meng F, Deng C (2014) Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules 15(6):1955–1969PubMedCrossRefGoogle Scholar
  121. Zhou L, Duan X, Zeng S et al (2015) Codelivery of SH-aspirin and curcumin by mPEG-PLGA nanoparticles enhanced antitumor activity by inducing mitochondrial apoptosis. Int J Nanomedicine 10:5205PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiosciencesIntegral UniversityLucknowIndia

Personalised recommendations