Nanomaterials: Emerging Trends and Future Prospects for Economical Agricultural System

  • Nitin Kumar
  • Abarna Balamurugan
  • M. Mohiraa Shafreen
  • Afrin Rahim
  • Siddharth Vats
  • Kanchan VishwakarmaEmail author


In developing countries, when it comes to national economy, one of the important building blocks is agriculture. The food production rate has risen, which has a substantial role in a country’s gross domestic production. The application of pesticides and fertilizers determines the rate of food production. Agricultural growth and food production are very much dependent on parameters like soil health, water availability, climate change, etc. Since the world population is expanding at an alarming rate, the food production needs to be enhanced, and adverse agricultural conditions have to be regulated. Supporting the massive increase in population, the sustainable development of agriculture is required. With latest advancements, new avenues have been opened up by nanotechnology in the field of food processing and crop improvement. The present chapter highlights the role and emergence of nanomaterials in agriculture system.


Nanomaterials Sustainable agriculture Nanofertilizers Targeted delivery 


  1. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2(3):179–188CrossRefGoogle Scholar
  2. Aguilar-Méndez MA, San Martín-Martínez E, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13(6):2525–2532CrossRefGoogle Scholar
  3. Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kim JH (2015) Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomedicine 10:1977PubMedPubMedCentralGoogle Scholar
  4. Baker S, Volova T, Prudnikova SV, Satish S, Prasad N (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Phar 53:10–17CrossRefGoogle Scholar
  5. Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13(5):R15CrossRefGoogle Scholar
  6. Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111(3):1075–1083PubMedCrossRefGoogle Scholar
  7. Ben-shalom N, Ardi R, Pinto R, Aki C, Fallik E (2003) Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot 22:285–290CrossRefGoogle Scholar
  8. Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85CrossRefGoogle Scholar
  9. Bharati S, Suresh A (2017) Review on nano-catalyst from waste for production of biofuel-via-bioenergy. In: Biofuels and bioenergy (BICE2016). Springer, Cham, pp 25–32CrossRefGoogle Scholar
  10. Bhatkhande DS, Pangarkar VG, Beenackers AA (2002) Photocatalytic degradation for environmental applications – a review. J Chem Technol Biotechnol 77(1):102–116CrossRefGoogle Scholar
  11. Bhor G, Maskare S, Hinge S, Singh L, Nalwade A (2014) Synthesis of silver nanoparticles by using leaflet extract of Nephrolepis exaltata L and evaluation of antibacterial activity against human and plant pathogenic bacteria. Asian J Pharm Technol 02(07):6Google Scholar
  12. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20(4):433–441PubMedCrossRefGoogle Scholar
  13. Celis R, Adelino MA, Hermosín MC, Cornejo J (2012) Montmorillonite-chitosan bionanocomposites as adsorbents of the herbicide clopyralid in aqueous solution and soil/water suspensions. J Hazard Mater 209–210:67–76PubMedCrossRefGoogle Scholar
  14. Charudattan R, Hiebert E (2007) A plant virus as a bioherbicide for tropical soda apple, Solanum viarum. Outlooks Pest Manag 18(4):167–171CrossRefGoogle Scholar
  15. Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1/6):17–31Google Scholar
  16. Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res Lett 9(1):65CrossRefGoogle Scholar
  17. Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, Novello G, Tantillo T, Zambonin PG, Bleve-Zacheo (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381(3):607–616PubMedCrossRefGoogle Scholar
  18. Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515CrossRefGoogle Scholar
  19. Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT (2018) A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides. Biosens Bioelectron 99:223–229PubMedCrossRefGoogle Scholar
  20. Davidson D, Gu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60(4):870–876PubMedCrossRefGoogle Scholar
  21. Devi PV, Duraimurugan P, Chandrika KSVP (2019) Bacillus thuringiensis-based nanopesticides for crop protection. In: Nano-biopesticides today and future perspectives. Academic, London, pp 249–260CrossRefGoogle Scholar
  22. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26(6):913–924PubMedCrossRefGoogle Scholar
  23. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002CrossRefGoogle Scholar
  24. Donaldson K, Stone V, Tran CL, Kreylin W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8(1):103–108CrossRefGoogle Scholar
  26. Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207PubMedCrossRefGoogle Scholar
  27. Duran N, Maezrcato PD (2013) Nanobiotechnology perspectives role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48:1127–1134CrossRefGoogle Scholar
  28. Dzung NA, Thang NT, Suchiva VK, Chandrkrachang S, Methacanon P, Peter MG (2002) Effects of oligoglucosamine prepared by enzyme degradation on the growth of soybean. Adv Chitin Sci Bangkok 5:463–467Google Scholar
  29. El-Bendary HM, El-Helaly AA (2013) First record nanotechnology in agricultural: silica nano-particles a potential new insecticide for pest control. App Sci Rep 4(3):241–246Google Scholar
  30. Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079CrossRefGoogle Scholar
  31. Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Sci Total Environ 466:503–512PubMedCrossRefGoogle Scholar
  32. Farré M, Sanchís J, Barceló D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trac-Trend Anal Chem 30(3):517–527CrossRefGoogle Scholar
  33. Feigl C, Russo SP, Barnard AS (2010) Safe, stable and effective nanotechnology: phase mapping of ZnS nanoparticles. J Mater Chem 20(24):4971–4980CrossRefGoogle Scholar
  34. Feng BH, Peng LF (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr Polym 88(2):576–582CrossRefGoogle Scholar
  35. Ferrell J, Carudattan R, Elliott M, Hiebert E (2008) Effects of selected herbicides on the efficacy of tobacco mild green mosaic virus to control tropical soda apple (Solanum viarum). Weed Sci 56(1):128–132CrossRefGoogle Scholar
  36. Fountain ED, Wratten SD (2013) Conservation biological control and biopesticides in agricultural. In: Reference module in earth systems and environmental sciences. Elsevier, San Diego, pp 377–381Google Scholar
  37. Frasco MF, Chaniotakis N (2009) Semiconductor quantum dots in chemical sensors and biosensors. Sensors 9(9):7266–7286PubMedCrossRefGoogle Scholar
  38. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed-Nanotechnol 5(4):382–386CrossRefGoogle Scholar
  39. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gerland P, Raftery AE, Ševcíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig GK, Wilmoth J (2014) World population stabilization unlikely this century. Science 346(6206):234–237PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803PubMedCrossRefGoogle Scholar
  42. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257CrossRefGoogle Scholar
  43. Grassini P, Eskridge KM, Cassman KG (2013) Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat Commun 4:2918PubMedPubMedCentralCrossRefGoogle Scholar
  44. Grillo R, Pereira AES, Nishisaka CS, Lima RD, Oehlke K, Greiner R, Leonardo F, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171PubMedCrossRefGoogle Scholar
  45. Guan H, Chi D, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot 29(9):942–946CrossRefGoogle Scholar
  46. Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91CrossRefGoogle Scholar
  47. Hale S, Alling V, Martinsen V, Mulder J, Breedveld G, Cornelissen G (2013) The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91:1612–1619PubMedCrossRefGoogle Scholar
  48. Hamdi H, De La Torre-Roche R, Hawthorne J, White JC (2014) Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L). Nanotoxicology 9(2):172–180PubMedCrossRefGoogle Scholar
  49. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215PubMedCrossRefGoogle Scholar
  50. Huang YC, Fan R, Grusak MA, Sherrier JD, Huang CP (2014) Effects of nano ZnO on the agronomically relevant Rhizobium–legume symbiosis. Sci Total Environ 497:78–90PubMedCrossRefGoogle Scholar
  51. Hussain MR, Devi R, Maji TK (2012) Controlled release of urea from chitosan microspheres prepared by emulsification and cross-linking method. Iran Polym J 21:473–479CrossRefGoogle Scholar
  52. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641PubMedCrossRefGoogle Scholar
  53. Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84CrossRefGoogle Scholar
  54. Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S et al (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194PubMedCrossRefGoogle Scholar
  55. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043PubMedCrossRefGoogle Scholar
  56. Judy JD, Kirby JK, McLaughlin MJ, McNear D, Bertsch PM (2016) Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Environ Pollut 214:731–736PubMedCrossRefGoogle Scholar
  57. Kahveci Z, Martinez-Tome MJ, Mallavia R, Mateo CR (2016) Fluorescent biosensor for phosphate determination based on immobilized polyfluorene-liposomal nanoparticles coupled with Alkaline Phosphatase. ACS Appl Mater Interface 9(1):136–144CrossRefGoogle Scholar
  58. Kammann CI, Schmidt H-P, Messerschmidt N, Linsel S, Steffens D, Müller C, Koyro H-W, Conte P, Stephen J (2015) Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci Rep 5:11080PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247–253PubMedCrossRefGoogle Scholar
  60. Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115:216–225PubMedCrossRefGoogle Scholar
  61. Keswani C, Sarma BK, Singh HB (2016) Synthesis of policy support, quality control, and regulatory management of biopesticides in sustainable agriculture. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 3–12CrossRefGoogle Scholar
  62. Khan MA, Kim K-W, Mingzhi W, Lim B-K, Lee W-H, Lee J-Y (2008) Nutrient-impregnated charcoal: an environmentally friendly slow-release fertilizer. Environmentalist 28:231–235CrossRefGoogle Scholar
  63. Khandelwal A, Joshi R (2018) Synthesis of nanoparticles and their application in agriculture. Acta Sci Agric 2(3):10–13Google Scholar
  64. Khodakovskaya MV, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedCrossRefPubMedCentralGoogle Scholar
  65. Khoobdel M, Ahsaei SM, Farzaneh M (2017) Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst). Entomol Res 47(3):175–184CrossRefGoogle Scholar
  66. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  67. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3(1):95–101CrossRefGoogle Scholar
  68. King A (2017) The future of agriculture. Nature 544(7651):S21–S23PubMedCrossRefGoogle Scholar
  69. Ko YD, Kang JG, Park JG, Lee S, Kim DW (2009) Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20(45):455701PubMedCrossRefGoogle Scholar
  70. Kress WJ et al (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102(23):8369–8374PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kumar N, Palmer GR, Shah V, Walker VK (2014) The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages. PLoS One 9:e99953PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kumar N, Sharma S, Nara S (2018) Dual gold nanostructure-based electrochemical immunosensor for CA125 detection. Appl Nanosci 8(7):1843–1853CrossRefGoogle Scholar
  73. Kumar N, Tripathi P, Nara S (2017) Gold nanomaterials to plants: impact of bioavailability, particle size and surface coating. In: Nanomaterials in plants, algae and micro-organism: concepts and controversies. Elsevier, London, pp 195–220Google Scholar
  74. Kumar P, Burman U, Santra P (2015) Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time. Int Nano Lett 5:191–198CrossRefGoogle Scholar
  75. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lao SB, Zhang ZX, Xu HH, Jiang GB (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr Polym 824:1136–1142CrossRefGoogle Scholar
  78. Latin R (2006) Residual efficacy of fungicides for control of dollar spot on creeping bentgrass. Plant Dis 50:571–575CrossRefGoogle Scholar
  79. Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51(2):129–137PubMedCrossRefGoogle Scholar
  80. Li Z, Xue N, Ma H, Cheng Z, Miao X (2018) An ultrasensitive and switch-on platform for aflatoxin B 1 detection in peanut based on the fluorescence quenching of graphene oxide-gold nanocomposites. Talanta 181:346–351PubMedCrossRefGoogle Scholar
  81. Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006a) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275CrossRefGoogle Scholar
  82. Liu XM, Feng ZB, Zhang FD, Zhang SQ, He XS (2006b) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5(9):700–706CrossRefGoogle Scholar
  83. Liu X, He B, Xu Z, Yin M, Yang W, Zhang H, Cao J, Shen J (2015) A functionalized fluorescent dendrimer as a pesticide nanocarrier: application in pest control. Nanoscale 7:445–449PubMedCrossRefGoogle Scholar
  84. Malmo J, Sørgård H, Vårum KM, Strand SP (2012) siRNA delivery with chitosan nanoparticles: molecular properties favoring efficient gene silencing. J Control Release 158:261–268PubMedCrossRefGoogle Scholar
  85. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27PubMedCrossRefGoogle Scholar
  86. Marchiol L, Mattiello A, Pošćić F, Giordano C, Musetti R (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101PubMedPubMedCentralCrossRefGoogle Scholar
  87. Martin OS, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582CrossRefGoogle Scholar
  88. Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. Biotech 6:254–263Google Scholar
  89. Meyers BC, Galbraith DW, Nelson T, Agrawal V (2004) Methods for transcriptional profiling in plants. Be fruitful and replicate. Plant Physiol 135(2):637–652PubMedPubMedCentralCrossRefGoogle Scholar
  90. Michels C, Perazzoli S, Soares HM (2017) Inhibition of an enriched culture of ammonia oxidizing bacteria by two different nanoparticles: silver and magnetite. Sci Total Environ 586:995–1002PubMedCrossRefGoogle Scholar
  91. Miller G, Kinnear S (2007) Nanotechnology the new threat to food. Clean Food Org 4:31–33Google Scholar
  92. Miller G, Lowrey N, Senjen R (2008) Out of the laboratory and on to our plates: nanotechnology in food & agriculture. Friends of the Earth, MelbourneGoogle Scholar
  93. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380CrossRefGoogle Scholar
  94. Mishra V, Mishra RK, Dikshit A, Pandey AC (2014) Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Emerging technologies and management of crop stress tolerance. Academic, Burlington, pp 159–180CrossRefGoogle Scholar
  95. Moll J, Gogos A, Bucheli TD, Widmer F, Heijden MG (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14(1):36CrossRefGoogle Scholar
  96. Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889–893CrossRefGoogle Scholar
  97. Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29Google Scholar
  98. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101(22):8772–8776PubMedCrossRefGoogle Scholar
  99. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  100. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886PubMedCrossRefGoogle Scholar
  101. Navarro E, Baun A, Behra R et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386PubMedCrossRefGoogle Scholar
  102. Netala VR, Kotakadi VS, Bobbu P, Gaddam SA, Tartte V (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti-microbial studies. 3 Biotech 6(2):132PubMedPubMedCentralCrossRefGoogle Scholar
  103. Oancea S, Padureanu S, Oancea AV (2009) Growth dynamics of corn plants during anionic clays action. Luc Ştiint ific 52:212–217Google Scholar
  104. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  105. Patel N, Desa P, Pael N, Jha A, Gautam HK (2014) Agronatechlogy for plant fungal disease management: a review. Int J Cur Microbiol Appl Sci 3(10):71–84Google Scholar
  106. Paula HCB, MSombra F, Cavalcante RF, Abreu FOMS, de Paula RCM (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31:173–178CrossRefGoogle Scholar
  107. Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K et al (2014) Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014:1–9CrossRefGoogle Scholar
  108. Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215PubMedCrossRefGoogle Scholar
  109. Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polym J 2:229–251Google Scholar
  110. Prasad VK, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):706–713Google Scholar
  111. Ragelle H, Vandermeulen G, Préa V (2013) Chitosan-based siRNA delivery systems. J Control Release 172:207–218PubMedCrossRefGoogle Scholar
  112. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293PubMedCrossRefGoogle Scholar
  113. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  114. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 2015:1–9Google Scholar
  116. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  117. Sarkar A, Praveen G (2017) Utilization of waste biomass into useful forms of energy. In: Biofuels and bioenergy. Springer, Cham, pp 117–132CrossRefGoogle Scholar
  118. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838PubMedCrossRefGoogle Scholar
  119. Scrinis G, Lyons K, Sharmila Rahale C (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Soc Agric Food 15:22–44Google Scholar
  120. Seo JW, Lee JH, Son IS, Kim YJ, Hwang Y, Chung HA, Kuswandi B, Wicaksono Y, Abdullah A, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens & Instrumen Food Qual 5:137–146CrossRefGoogle Scholar
  121. Shojaei TR et al (2009) The effect of plant growth regulators, cultivars and substrate combination on production of virus free potato minitubers. Afr J Biotechnol 8(19):4864–4871Google Scholar
  122. Shrivastava S, Dash D (2012) Nanotechnology in food sector and agriculture. Proc Natl Acad Sci India Sect B Biol Sci 82(1):29–35CrossRefGoogle Scholar
  123. Shweta, Vishwakarma K, Sharma S, Narayan RP, Srivastava P, Khan AS, Dubey NK, Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Nanotechnology. Springer, Singapore, pp 317–340CrossRefGoogle Scholar
  124. Silva MS, Cocenzaa DS, Grillo R, de Meloa NFS, Tonelloa POS, de Oliveirac LC, Cassimirod DL, Rosaa AH, Fracetoa LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374CrossRefGoogle Scholar
  125. Singh S, Vishwakarma K, Singh S, Sharma S, Dubey NK, Singh VK, Liu S, Tripathi DK, Chauhan DK (2017) Understanding the plant and nanoparticle interface at transcriptomic and proteomic level: a concentric overview. Plant Gene 11:265-272Google Scholar
  126. Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Sharma S (2019) Nanomaterials and microbes’ interactions. Biotech 9(3):68Google Scholar
  127. Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28(2):213–221PubMedCrossRefGoogle Scholar
  128. Spokas KA, Novak JM, Venterea RT (2012) Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil 350:35–42CrossRefGoogle Scholar
  129. Steinborn A, Alder L, Spitzke M, Dork D, Anastassiades M (2017) Development of a QuEChERS-based method for the simultaneous determination of acidic pesticides, their esters, and conjugates following alkaline hydrolysis. J Agric Food Chem 65:1296–1305PubMedCrossRefGoogle Scholar
  130. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21PubMedCrossRefGoogle Scholar
  131. Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int 64:976–981PubMedCrossRefGoogle Scholar
  132. Tao S, Pang R, Chen C et al (2012) Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydr Polym 88:1189–1194CrossRefGoogle Scholar
  133. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–667PubMedCrossRefGoogle Scholar
  134. Torney F, Trewyn BG, Lin VS, Wang (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300PubMedPubMedCentralCrossRefGoogle Scholar
  135. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81PubMedCrossRefGoogle Scholar
  136. Tripathi DK, Mishra RK, Singh S, Singh S, Singh VP, Singh PK, Chauhan DK, Prasad SM, Dubey NK, Pandey AC (2017c) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate-glutathione cycle. Front Plant Sci 8:1Google Scholar
  137. Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol Plant 34(1):279–289CrossRefGoogle Scholar
  138. Tripathi DK, Tripathi A, Shweta SS, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Dubey NK, Lee Y, Chauhan DK (2017a) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8(7):1–16Google Scholar
  139. Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Sharma S (2017a) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae and microorganism: concepts and controversies. Elsevier, New York, pp 473–500Google Scholar
  140. Vishwakarma K, Shweta, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017b) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1–12PubMedPubMedCentralGoogle Scholar
  141. Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2019) Silicon and plant growth promoting rhizobacteria differentially regulate AgNPinduced toxicity in Brassica juncea: implication of nitric oxide. J Hazard Mater 121806Google Scholar
  142. Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Procedia Mater Sci 10:548–554SCrossRefGoogle Scholar
  143. Wani AH, Shah MA (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharma Sci 2(3):4Google Scholar
  144. Woo KS, Kim KS, Lamsal K et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764Google Scholar
  145. Wu L, Liu M, Liang R (2008) Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. Bioresour Technol 99:547–554PubMedCrossRefGoogle Scholar
  146. Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693PubMedCrossRefGoogle Scholar
  147. Xie L, Liu M, Ni B, Zhang X, Wang Y (2011) Slow-release nitrogen and boron fertilizer from a functional superabsorbent formulation based on wheat straw and attapulgite. Chem Eng 167:342–348CrossRefGoogle Scholar
  148. Xu G, Sun J, Shao H, Chang SX (2014) Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol Eng 62:54–60CrossRefGoogle Scholar
  149. Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticle loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162PubMedCrossRefPubMedCentralGoogle Scholar
  150. Yang Y, Wang J, Xiu Z, Alvarez PJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen- cycling bacteria. Environ Toxicol Chem 32:1488–1494PubMedGoogle Scholar
  151. Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, Ding K (2015) Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl 6:591–604Google Scholar
  152. Zimnitsky D, Jiang C, Xu J, Lin Z, Tsukruk VV (2007) Substrate-and time-dependent photoluminescence of quantum dots inside the ultrathin polymer LbL film. Langmuir 23(8):4509–4515PubMedCrossRefGoogle Scholar
  153. Zuo X, Zhang H, Zhu Q, Wang W, Feng J, Chen X (2016) A dual-colour fluorescent bio sensing platform based on WS2 nanosheet for detection of Hg2+ and Ag+. Biosens Bioelectron 85:464–470PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nitin Kumar
    • 1
  • Abarna Balamurugan
    • 1
  • M. Mohiraa Shafreen
    • 1
  • Afrin Rahim
    • 1
  • Siddharth Vats
    • 2
  • Kanchan Vishwakarma
    • 3
    Email author
  1. 1.Department of BiotechnologyPeriyar Maniammai Institute of Science and TechnologyThanjavurIndia
  2. 2.Shri Ram Swaroop Memorial UniversityLucknowIndia
  3. 3.Amity Institute of Microbial Technology, Amity UniversityNoidaIndia

Personalised recommendations