Biogenic Nanoparticles in the Insect World: Challenges and Constraints

  • Nariman Maroufpour
  • Mahdieh Mousavi
  • Behnam Asgari Lajayer
  • Mansour GhorbanpourEmail author


Insects are found in a variety of environmental conditions and occupy little more than two-thirds of the known species of animals in the world. Traditional pest management tactics used in plant protection are insufficient, and synthetic pesticides are costly and have adverse effects on human and environment. A brilliant approach to pest control is using nanoparticles to help reduce the application of synthetic pesticides and environmental pollution, therefore providing green and efficient alternative approaches for pest control in plant protection by the help of nanotechnology without harming the environment. Nowadays, biosynthesis of nanoparticles by microorganisms and plants is being efficiently used in plant protection.


Insects Plant protection Nanoparticles Nanotechnology 


  1. Afrin T, Wait A (2018) Effects of engineered carbon and silver nanoparticles on gene expression in Plutella xylostella to assess toxicity. J Genet Genet Eng 2:9–17Google Scholar
  2. Amerasan D, Nataraj T, Murugan K, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256CrossRefGoogle Scholar
  3. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12:262–268CrossRefGoogle Scholar
  4. Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186CrossRefPubMedPubMedCentralGoogle Scholar
  5. Athanassiou C, Kavallieratos N, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15CrossRefGoogle Scholar
  6. Banumathi B et al (2017) Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus—a review. Vet Parasitol 244:102–110CrossRefGoogle Scholar
  7. Barik T, Sahu B, Swain V (2008) Nanosilica—from medicine to pest control. Parasitol Res 103:253–258CrossRefGoogle Scholar
  8. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395CrossRefGoogle Scholar
  9. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  10. Benelli G (2016a) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  11. Benelli G (2016b) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  12. Benelli G (2018) Gold nanoparticles–against parasites and insect vectors. Acta Trop 178:73–80CrossRefGoogle Scholar
  13. Benelli G, Lukehart CM (2017) Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2CrossRefGoogle Scholar
  14. Benelli G et al (2017a) Nanoparticles as effective acaricides against ticks—a review. Ticks Tick Borne Dis 8:821–826CrossRefGoogle Scholar
  15. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017b) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10CrossRefGoogle Scholar
  16. Bharani RA, Namasivayam SKR (2017) Biogenic silver nanoparticles mediated stress on developmental period and gut physiology of major lepidopteran pest Spodoptera litura (Fab.) (Lepidoptera: Noctuidae)—an eco-friendly approach of insect pest control. J Environ Chem Eng 5:453–467CrossRefGoogle Scholar
  17. Devi GD, Murugan K, Selvam CP (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopest 7:54–66Google Scholar
  18. Dinesh D et al (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefGoogle Scholar
  19. Dubey M, Bhadauria S, Kushwah B (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543Google Scholar
  20. Dziewięcka M, Karpeta-Kaczmarek J, Augustyniak M, Majchrzycki Ł, Augustyniak-Jabłokow MA (2016) Evaluation of in vivo graphene oxide toxicity for Acheta domesticus in relation to nanomaterial purity and time passed from the exposure. J Hazard Mater 305:30–40CrossRefGoogle Scholar
  21. Ehrlich H et al (2008) Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites. J Nanomater 3:1–8Google Scholar
  22. Elango G, Roopan SM, Dhamodaran KI, Elumalai K, Al-Dhabi NA, Arasu MV (2016) Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J Photochem Photobiol B Biol 162:162–167CrossRefGoogle Scholar
  23. Fahimirad S, Ajalloueian F, Ghorbanpour M (2019) Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicol Environ Saf 168:260–278CrossRefGoogle Scholar
  24. Filipponi L, Sutherland D, Center IN (2010) Introduction to nanoscience and nanotechnologies Interdisciplinary Nanoscience Center (iNano): Aarhus University, NANOYOU Teachers Training in Nanoscience and Nanotechnologies, pp 2–29Google Scholar
  25. Foldbjerg R, Jiang X, Miclăuş T, Chen C, Autrup H, Beer C (2015) Silver nanoparticles–wolves in sheep’s clothing? Toxicol Res 4:563–575CrossRefGoogle Scholar
  26. Fouad H, Hongjie L, Hosni D, Wei J, Abbas G, Ga’al H, Jianchu M (2018) Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif Cells Nanomed Biotechnol 46:558–567CrossRefGoogle Scholar
  27. Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242:326–332CrossRefGoogle Scholar
  28. Fruijtier-Pölloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica—A. nanostructured material. Toxicology 294:61–79CrossRefGoogle Scholar
  29. Ga’al H, Fouad H, Tian J, Hu Y, Abbas G, Mo J (2018) Synthesis, characterization and efficacy of silver nanoparticles against Aedes albopictus larvae and pupae. Pestic Biochem Physiol 144:49–56CrossRefGoogle Scholar
  30. Govindarajan M, Benelli G (2016) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029CrossRefGoogle Scholar
  31. Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101CrossRefGoogle Scholar
  32. Huang J et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  33. Huck WT (2008) Responsive polymers for nanoscale actuation. Mater Today 11:24–32CrossRefGoogle Scholar
  34. Iga M, Kataoka H (2012) Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol Pharm Bull 35:838–843CrossRefGoogle Scholar
  35. Jayaseelan C et al (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109:185–194CrossRefGoogle Scholar
  36. Jayaseelan C et al (2012) Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites. Parasitol Res 111:921–933CrossRefGoogle Scholar
  37. Jiang X et al (2015) Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Nanotoxicology 9:181–189CrossRefGoogle Scholar
  38. Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235CrossRefGoogle Scholar
  39. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867CrossRefGoogle Scholar
  40. Kalimuthu K et al (2017) Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot 109:82–96CrossRefGoogle Scholar
  41. Kamaraj C, Rajakumar G, Rahuman AA, Velayutham K, Bagavan A, Zahir AA, Elango G (2012) Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitol Res 111:2439–2448CrossRefGoogle Scholar
  42. Knowles A (2009) Global trends in pesticide formulation technology: the development of safer formulations in China. Outlook Pest Manag 20:165–170CrossRefGoogle Scholar
  43. Lamb JG, Hathaway LB, Munger MA, Raucy JL, Franklin MR (2010) Nanosilver particle effects on drug metabolism in vitro. Drug Metab Dispos 38:2246–2251CrossRefGoogle Scholar
  44. Lin J, Zhang H, Chen Z, Zheng Y (2010) Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–5429CrossRefGoogle Scholar
  45. Lin PC, Lin HJ, Liao YY, Guo HR, Chen KT (2013a) Acute poisoning with neonicotinoid insecticides: a case report and literature review. Basic Clin Pharmacol Toxicol 112:282–286CrossRefGoogle Scholar
  46. Lin Q et al (2013b) Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS One 8:e72314CrossRefPubMedPubMedCentralGoogle Scholar
  47. Madhiyazhagan P et al (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317CrossRefGoogle Scholar
  48. Mao B-H, Chen Z-Y, Wang Y-J, Yan S-J (2018) Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8:2445CrossRefPubMedPubMedCentralGoogle Scholar
  49. Marimuthu S et al (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549CrossRefGoogle Scholar
  50. Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2:875–894CrossRefGoogle Scholar
  51. Martínez-Paz P, Morales M, Martínez-Guitarte JL, Morcillo G (2012) Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae. Comp Biochem Physiol Part C: Toxicol Pharmacol 155:333–343Google Scholar
  52. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  53. Moore M (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976CrossRefGoogle Scholar
  54. Moorthi PV, Balasubramanian C, Mohan S (2015) An improved insecticidal activity of silver nanoparticle synthesized by using Sargassum muticum. Appl Biochem Biotechnol 175:135–140CrossRefGoogle Scholar
  55. Mukunthan K, Elumalai E, Patel TN, Murty VR (2011) Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 1:270–274CrossRefPubMedPubMedCentralGoogle Scholar
  56. Murugan K et al (2015a) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  57. Murugan K et al (2015b) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654CrossRefGoogle Scholar
  58. Nair PMG, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101:550–560CrossRefGoogle Scholar
  59. Nair PMG, Choi J (2012) Modulation in the mRNA expression of ecdysone receptor gene in aquatic midge, Chironomus riparius upon exposure to nonylphenol and silver nanoparticles. Environ Toxicol Pharmacol 33:98–106CrossRefGoogle Scholar
  60. Nair PMG, Park SY, Lee S-W, Choi J (2011) Differential expression of ribosomal protein gene, gonadotropin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37CrossRefGoogle Scholar
  61. Nair PMG, Park SY, Choi J (2013) Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 92:592–599CrossRefGoogle Scholar
  62. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373CrossRefGoogle Scholar
  63. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  64. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  65. Niu G, Rupasinghe SG, Zangerl AR, Siegel JP, Schuler MA, Berenbaum MR (2011) A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella). Insect Biochem Mol Biol 41:244–253CrossRefGoogle Scholar
  66. Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37:161–164CrossRefGoogle Scholar
  67. Owolade O, Ogunleti D, Adenekan M (2008) Titanium dioxide affects disease development and yield of edible cowpea. J Agric Food Chem 7:2942–2947Google Scholar
  68. Park E-J, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro 24:872–878CrossRefGoogle Scholar
  69. Pelkonen O, Mäeenpäeä J, Taavitsainen P, Rautio A, Raunio H (1998) Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 28:1203–1253CrossRefGoogle Scholar
  70. Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545Google Scholar
  71. Rajaganesh R et al (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51CrossRefGoogle Scholar
  72. Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  73. Roni M et al (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38CrossRefGoogle Scholar
  74. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831CrossRefGoogle Scholar
  75. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343CrossRefGoogle Scholar
  77. Simkiss K, Wilbur KM (2012) Biomineralization. Academic/Elsevier, San Diego, p 337Google Scholar
  78. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988CrossRefGoogle Scholar
  79. Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184CrossRefGoogle Scholar
  80. Soni N, Prakash S (2013) Possible mosquito control by silver nanoparticles synthesized by soil fungus (Aspergillus niger 2587). Adv Nanopart 2:125–132CrossRefGoogle Scholar
  81. Subramaniam J et al (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res 22:20067–20083CrossRefGoogle Scholar
  82. Suganya P et al (2017) Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the zika virus vector Aedes aegypti. J Photochem Photobiol B Biol 173:404–411CrossRefGoogle Scholar
  83. Sundararajan B, Kumari BR (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol 43:187–196CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sundaravadivelan C, Padmanabhan MN (2014) Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ Sci Pollut Res 21:4624–4633CrossRefGoogle Scholar
  85. Suresh G et al (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta A Mol Biomol Spectrosc 127:61–66CrossRefGoogle Scholar
  86. Suresh U et al (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  87. Teimouri M, Khosravi-Nejad F, Attar F, Saboury AA, Kostova I, Benelli G, Falahati M (2018) Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—a review. J Clean Prod 184:740–753CrossRefGoogle Scholar
  88. Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096CrossRefGoogle Scholar
  89. Warisnoicharoen W, Hongpiticharoen P, Lawanprasert S (2011) Alteration in enzymatic function of human cytochrome P450 by silver nanoparticles. Res J Environ Toxicol 5:58–64CrossRefGoogle Scholar
  90. Watson GS, Watson JA (2004) Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. Appl Surf Sci 235:139–144CrossRefGoogle Scholar
  91. Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:Reviews3003CrossRefPubMedPubMedCentralGoogle Scholar
  92. Yasur J, Rani PU (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648CrossRefGoogle Scholar
  93. Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102CrossRefGoogle Scholar
  94. Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 11:921–933Google Scholar
  95. Zhang G, Zhang J, Xie G, Liu Z, Shao H (2006) Cicada wings: a stamp from nature for nanoimprint lithography. Small 2:1440–1443CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nariman Maroufpour
    • 1
  • Mahdieh Mousavi
    • 2
  • Behnam Asgari Lajayer
    • 3
  • Mansour Ghorbanpour
    • 4
    Email author
  1. 1.Department of Plant Protection, Faculty of AgricultureUniversity of TabrizTabrizIran
  2. 2.Department of Plant Protection, Faculty of AgricultureUrmia UniversityUrmiaIran
  3. 3.Department of Soil Science, Faculty of AgricultureUniversity of TabrizTabrizIran
  4. 4.Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran

Personalised recommendations