What Happens When the Robot Gets Eyelashes? Gender Perspective on Programming in Preschool

  • Mia HeikkiläEmail author


In the revised Swedish national preschool curriculum the idea of educating children in four specific disciplines is formed as an interdisciplinary theme with an applied approach to STEM. Programming, as a form of applied mathematics and technology, is a growing feature in preschools today, but little is known from research about coding with young children (Mannila, 2017). This chapter presents an analysis of a case study of how teaching and learning programming in early childhood education is done and the analysis elaborates on gender aspects of this. Multimodality, as well as feminist poststructuralist perspectives, is considered relevant analytical tools in order to understand the interaction and communication going on in the sequences of teaching and learning on programming (Francis, 2002; Kress, 2003; Selander, 2017). The results of the analysis show both how programming creates great interest amongst the children, illustrated by children’s patience and willingness to follow the content of the sequences, and also how programming risks to become more boy-friendly in educational practice.


  1. Åkerfeldt, A., Kjällander, S. & Selander, S. (2018). Programmering: Introduktion till digital kompetens i grundskolan. (1 uppl.) Stockholm: Liber.Google Scholar
  2. Bateman, A., Carr, M. & Gunn, A. C. (2017). Children’s use of objects in their storytelling. In A. C. Gunn & C. A. Hruska (Eds.), Interactions in early childhood education: Recent research and emergent concepts (pp. 37–53). Springer: e-book central.Google Scholar
  3. Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2013). Computional thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–157.CrossRefGoogle Scholar
  4. Blaise, M. (2005). Playing it straight: Uncovering gender discourses in the early childhood classroom. London: Routledge.Google Scholar
  5. Brennan, K. & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. AERA, 2012.Google Scholar
  6. Cejka, E., Rogers, C., & Portsmore, M. (2006). Kindergarten robotics: Using robotics to motivate math, science, and engineering literacy in elementary school. International Journal of Engineering Education, 22(4), 711–722.Google Scholar
  7. Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of Educational Psychology, 76(6), 051–1058.CrossRefGoogle Scholar
  8. Davies, B. (2003). Hur flickor och pojkar gör kön. (1. uppl.). Stockholm: Liber.Google Scholar
  9. Dolk, K. (2013). Bångstyriga barn: Makt, normer och delaktighet i förskolan. (Doktorsavhandling). Stockholm: Stockholms universitet.Google Scholar
  10. Eidevald, C. (2009). Det finns inga tjejbestämmare: Att förstå kön som position i förskolans vardagsrutiner och lek. (Doktorsavhandling). Högskolan i Jönköping.Google Scholar
  11. Fesakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5–6 years old kindergarten children in a computer programming environment: A case study. Computers & Education, 63, 87–97.CrossRefGoogle Scholar
  12. Francis, B. (2002). Boys, girls, and achievement: Addressing the classroom issues. London: Falmer Press.CrossRefGoogle Scholar
  13. Francis, B. (2012). Gender monoglossia, gender heteroglossia: The potential of Bakhtin’s work for re-conceptualising gender. Journal of Gender Studies, 21(1), 1–15.CrossRefGoogle Scholar
  14. Francis, B. & Skelton, C. (red.). (2001). Investigating gender: Contemporary perspectives in education. Buckingham: Open University Press.Google Scholar
  15. Heikkilä, M. (2015). Lärande och jämställdhet i förskola och skola. (1. uppl.). Stockholm: Liber.Google Scholar
  16. Heikkilä, M., & Mannila, L. (2018). Debugging in programming as a multimodal practice in early childhood education settings. Multimodal Technologies and Interaction, 2(3), 42. Scholar
  17. Hellman, A. (2010). Kan Batman vara rosa? [Elektronisk resurs]: Förhandlingar om pojkighet och normalitet på en förskola. (Doktorsavhandling). Göteborg: Göteborgs universitet.Google Scholar
  18. Jensen, T., & Sandström, J. (2016). Fallstudier, Upplaga 1:1 (p. 2016). Lund: Studentlitteratur.Google Scholar
  19. Kanaki, K., & Kalogiannakis, M. (2018). Introducing fundamental object-oriented programming concepts in preschool education within the context of physical science courses. Education and Information Technologies (forthcoming article), Scholar
  20. Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequenceing ability in early childhood. Early Childhood Education Journal, 41, 245–255.CrossRefGoogle Scholar
  21. Kress, G. R. (2003). Literacy in the new media age. London: Routledge.CrossRefGoogle Scholar
  22. Kress, G. R. (2010). Multimodality: A social semiotic approach to contemporary communication. London: Routledge.Google Scholar
  23. Kress, G. (2017). Semiotic work: Design, transformation, transduction. In E. Insulander, S. Kjällander, F. Lindstrand, & A. Åkerfeldt (red.), Didaktik i omvandlingens tid: Text, representation, design. (Första upplagan) (pp. 39–51). Stockholm: Liber.Google Scholar
  24. Levy, S. T., & Mioduser, D. (2010). Approaching complexity through planful play: Kindergarten children’s strategies in constructing an autonomous robot’s behaviour. International Journal of Computers for Mathematical Learning, 15(1), 21–43.CrossRefGoogle Scholar
  25. Läroplan för förskolan. (2018). Lpfö 18. Stockholm: Skolverket.Google Scholar
  26. Mannila, L. (2017). Att undervisa i programmering i skolan: Varför, vad och hur?. Lund: Studentlitteratur.Google Scholar
  27. Paechter, C. (2010). Tomboys and girly-girls: Embodied femininities in primary schools. Discourse: Studies in the Cultural Politics of Education, 31(2), 221–235.Google Scholar
  28. Pahl, K. (2009). Interactions, intersections and improvisations: Studying the multimodal texts and classroom talk of six- to seven-year-olds. International Journal of Early Childhood Literacy, 9(2), 188–210.CrossRefGoogle Scholar
  29. Palmér, H., & van Bommel, J. (2016). Problemlösning som utgångspunkt—matematikundervisning i förskoleklass. Stockholm: Liber.Google Scholar
  30. Papert, S. (1971). Teaching children thinking (LOGO memo). Massachusetts Institute of Technology, A.I: Laboratory.Google Scholar
  31. Papert, S. (1980). Mindstorms: Children. Computers and Powerful Ideas: Basic Books, New York, NY, USA.Google Scholar
  32. Papert, S. & Harel, I. (1991). Situating constructionism. Ur boken Constructionism.
  33. Selander, S. (2017). Didaktiken efter Vygotskij: Design för lärande. (Första upplagan). Stockholm: Liber.Google Scholar
  34. SOU 2010:53. Kimmel, M. S. (2010). Boys and school: A background paper on the “boy crisis”. Stockholm: Fritze.Google Scholar
  35. Stein, P. (2008). Multimodal pedagogies in diverse classrooms: Representation, rights and resources. London: Routledge.Google Scholar
  36. Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The wheels of the bot go round and round: Robotics curriculum in pre-kindergarten. Journal of Information Technology Education: Innovations in Practice, 12, 203–219.CrossRefGoogle Scholar
  37. Säljö, R. (2010). Lärande och kulturella redskap: Om lärprocesser och det kollektiva minnet. (2. uppl.). Stockholm: Norstedt.Google Scholar
  38. Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I. M., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Educational Technology & Society, 19(2), 148–163.Google Scholar
  39. Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Åbo Akademi UniversityVaasaFinland

Personalised recommendations