Advertisement

Description of the Wolfram SystemModeler

  • Kirill Rozhdestvensky
  • Vladimir Ryzhov
  • Tatiana Fedorova
  • Kirill Safronov
  • Nikita Tryaskin
  • Shaharin Anwar SulaimanEmail author
  • Mark Ovinis
  • Suhaimi Hassan
Chapter
  • 20 Downloads

Abstract

This chapter describes Wolfram SystemModeler (WSM), an interactive graphical modeling and simulation environment. The WSM is intended for computer simulation of complex multi-domain physical and engineering systems and processes based on the Modelica language. It allows to simulate the developed models and provides a wide range of tools for analyzing the results of the simulation. The reader gets acquainted with the basics of writing program code with the use of the object-oriented language Modelica. In addition, the basics of working in the Model Center to create a component model using the Modelica standard library are demonstrated. The principles of creating custom components as well as the rules for performing a computational experiment in the Simulation Center are described in detail. The chapter contains a large number of simple and useful examples.

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    M.V. Tiller, Modelica by Example: https://mbe.modelica.university/
  5. 5.
    S.A. Agafonov, T.V. Muratova, Obyknovennye differencialnye uravneniya: ucheb. posobie dlya stud. vuzov. – Izdatelskij centr «Akademiya», Moscow (2008)Google Scholar
  6. 6.
    V.V. Amelkin, Differencialnye uravneniya v prilozheniyah. – Nauka, Gl. red. fiz-mat. lit., Moscow (1987)Google Scholar
  7. 7.
    A.I. Egorov, Obyknovennye differencialnye uravneniya s prilozheniyami, 2-e izd. – Fizmatlit, Moscow (2005)Google Scholar
  8. 8.
    V.V. Nemyckij, V.V. Stepanov, Kachestvennaya teoriya differencialnyh uravnenij, 2-e izd., pererab. i dop. – Gosudarstvennoe izdatelstvo texniko-teoreticheskoj literatury, Moscow-Leningrad (1949)Google Scholar
  9. 9.
    I.G. Petrovsky, Lectures On Partial Differential Equation. – Dover Publications Inc. (1992)Google Scholar
  10. 10.
    L.S. Pontryagin, Znakomstvo s vysshej matematikoj: Differencialnye uravneniya i ix prilozheniya. – Gl. red. fiz-mat. lit., Moscow (1988)Google Scholar
  11. 11.
    A.A. Samarskii, A.V. Gulin, Chislennye metody, Uchebnoe posobie. – Nauka, Moscow (1989)Google Scholar
  12. 12.
    E. Haier, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edition, Springer Series in Computational Mathematics. – Springer-Verlag Berlin Heidelberg (1993)Google Scholar
  13. 13.
    E. Haier, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edition, Springer Series in Computational Mathematics. – Springer-Verlag Berlin Heidelberg (1996)Google Scholar
  14. 14.
    G. Hall, James Murray Watt, Modern Numerical Methods for Ordinary Differential Equations. – Clarendon Press (1976)Google Scholar
  15. 15.
    L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, L. Chua, Metody kachestvennoj teorii v nelinejnoj dinamike. Chast 1, Chast 2. –Institut kompyuternyx issledovanij, Moskva-Izhevsk (2004)Google Scholar
  16. 16.
    D. K. Arrowsmith, C. M. Place, Ordinary differential equations: a qualitative approach with applications. – Chapman and Hall, London and New York (1982)Google Scholar
  17. 17.
    A.C. Hindmarsh, L.R. Petzold, Algorithms and software for ordinary differential equations and differential-algebraic equations, Part 1: Euler methods and error estimation. – Comput. Phys. 9(1), 34–41 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    A.C. Hindmarsh, L.R. Petzold, Algorithms and software for ordinary differential equations and differential-algebraic equations, Part II: higher-order methods and software packages. – Comput. Phys. 9(2), 48–155 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    Numerical Methods for Solving Differential Equations. Heun’s Method (Mathematics & Science Learning Center, Computer Laboratory): https://calculslab.deltacollege.edu/ODE/7-C-2/7-C-2-h
  20. 20.
    L.R. Petzold, A description of DASSL: a differential/algebraic system solver, in 10th International Mathematics and Computers Simulation Congress on Systems Simulation and Scientific Computation, Montreal, Canada, August 9, 1982, Sandia Report, 1982, ed. by L.R. Petzold, 10 pGoogle Scholar
  21. 21.
    R. Serban, A.C. Hindmash, CVODES, The sensitivity-enabled ODE solver in SUNDIALS, in ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6: 5th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C, Long Beach, CA, USA, September 24–28, 2005 (ASME, 2005), pp. 257–269Google Scholar
  22. 22.
    R. Serban, A.C. Hindmash, CVODES: An ODE Solver with Sensitivity Analysis Capabilities. University of California, Lawrence Livermore National Laboratory, Technical Information Department’s Digital Library, Livermore, CA (Preprint UCRL-JP-200039)Google Scholar
  23. 23.
    Yu.B. Kolesov, Yu.B. Senichenkov, Matematicheskoe modelirovanie gibridnyh dinamicheskih system. – Izdatelstvo Politehnicheskogo universiteta, St. Petersburg (2014)Google Scholar
  24. 24.
    Yu.B. Kolesov, Yu.B. Senichenkov, Modelirovanie sistem. Dinamicheskie i gibridnye sistemy. – BHV-Peterburg, St. Petersburg (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Kirill Rozhdestvensky
    • 1
  • Vladimir Ryzhov
    • 2
  • Tatiana Fedorova
    • 3
  • Kirill Safronov
    • 4
  • Nikita Tryaskin
    • 5
  • Shaharin Anwar Sulaiman
    • 6
    Email author
  • Mark Ovinis
    • 7
  • Suhaimi Hassan
    • 8
  1. 1.Department of Applied Mathematics and Mathematical ModelingSt. Petersburg State Marine Technical University (SMTU)Saint PetersburgRussia
  2. 2.Department of Applied Mathematics and Mathematical ModelingSt. Petersburg State Marine Technical University (SMTU)Saint PetersburgRussia
  3. 3.Department of Applied Mathematics and Mathematical ModelingSt. Petersburg State Marine Technical University (SMTU)Saint PetersburgRussia
  4. 4.Department of Applied Mathematics and Mathematical ModelingSt. Petersburg State Marine Technical University (SMTU)Saint PetersburgRussia
  5. 5.Department of Hydromechanics and Marine AcousticsSt. Petersburg State Marine Technical University (SMTU)Saint PetersburgRussia
  6. 6.Department of Mechanical EngineeringUniversiti Teknologi PETRONASSeri IskandarMalaysia
  7. 7.Department of Mechanical EngineeringUniversiti Teknologi PETRONASSeri IskandarMalaysia
  8. 8.Department of Mechanical EngineeringUniversiti Teknologi PETRONASSeri IskandarMalaysia

Personalised recommendations