Advertisement

Introduction

  • Tingting MengEmail author
  • Wei He
Chapter
  • 5 Downloads
Part of the Springer Tracts in Mechanical Engineering book series (STME)

Abstract

Comparing with rigid structures, flexible structures are of lighter weight, lower energy consumption and higher agility [1, 2, 3]. In engineering, flexible structures are widely used due to their flexibility and agility [4, 5], such as flexible manipulators [6, 7, 8, 9], flexible satellites [10, 11, 12], flexible air-breathing hypersonic vehicles [13, 14, 15], flexible micro aerial vehicles [16], flexible cranes [17, 18] and flexible marine risers [19, 20, 21].

References

  1. 1.
    Hamamoto M, Ohta Y, Hara K, Hisada T (2010) A fundamental study of wing actuation for a 6-in-wingspan flapping microaerial vehicle. IEEE Trans Robot 26(2):244–255CrossRefGoogle Scholar
  2. 2.
    Liu J (2013) Radial basis function neural network control for mechanical systems design, analysis and matlab simulation. Springer Press, TsinghuaGoogle Scholar
  3. 3.
    Liu J-K, Wang X (2011) Advanced sliding mode control for mechanical systems design, analysis and matlab simulation. Springer Press, TsinghuaGoogle Scholar
  4. 4.
    Shen H, Xu Y, Dickinson BT (2014) Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array. Bioinspiration Biomim 9(4):1–13CrossRefGoogle Scholar
  5. 5.
    Deng X, Schenato L, Wu WC, Sastry SS (2010) Flapping flight for biomimetic robotic insects: part I-system modeling. IEEE Trans Robot 22(4):776–788CrossRefGoogle Scholar
  6. 6.
    De Queiroz MS, Dawson DM, Agarwal M, Zhang F (2002) Adaptive nonlinear boundary control of a flexible link robot arm. IEEE Trans Robot Autom 15(4):779–787CrossRefGoogle Scholar
  7. 7.
    Jnifene A (2007) Active vibration control of flexible structures using delayed position feedback. Syst Control Lett 56(3):215–222CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Zhang L, Liu J (2013) Adaptive boundary control for flexible two-link manipulator based on partial differential equation dynamic model. IET Control Theory Appl 7(1):43–51CrossRefMathSciNetGoogle Scholar
  9. 9.
    Liu Z, Liu J, He W (2015) Adaptive boundary control of a flexible manipulator with input saturation. Int J Control 89(6):1–21MathSciNetGoogle Scholar
  10. 10.
    Hu Q, Ma G (2005) Variable structure control and active vibration suppression of flexible spacecraft during attitude maneuver. Aerosp Sci Technol 9(4):307–317CrossRefzbMATHGoogle Scholar
  11. 11.
    Xiao B, Hu Q, Zhang Y (2012) Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans Control Syst Technol 20(6):1605–1612CrossRefGoogle Scholar
  12. 12.
    Hu Q (2007) Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn 52(3):227–248CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Fiorentini L, Serrani A, Bolender MA, Doman DB (2012) Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J Guid Control Dyn 32(2):402–417CrossRefGoogle Scholar
  14. 14.
    Wang N, Wu H-N, Guo L (2014) Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles. Nonlinear Dyn 78(3):2141–2159CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Bu X, Wu X, Huang J, Ma Z, Zhang R (2016) Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers. Neurocomputing 175:816–825CrossRefGoogle Scholar
  16. 16.
    Paranjape AA, Guan J, Chung SJ, Krstic M (2013) PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans Robot 29(3):625–640CrossRefGoogle Scholar
  17. 17.
    He X, He W, Shi J, Sun C (2017) Boundary vibration control of variable length crane systems in two dimensional space with output constraints. IEEE/ASME Trans Mechatron 22(5):1952–1962CrossRefGoogle Scholar
  18. 18.
    He W, Ge SS (2016) Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66:146–154CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    He W, He X, Ge SS (2016) Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Trans Mechatron 21(1):254–265Google Scholar
  20. 20.
    He W, Ge SS, How BVE, Choo YS, Hong KS (2011) Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47(4):722–732CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    He W, Sun C, Ge SS (2014) Top tension control of a flexible marine riser by using integral-barrier Lyapunov function. IEEE/ASME Trans Mechatron 20(2):497–505CrossRefGoogle Scholar
  22. 22.
    Meng T, He W, Yang H, Liu JK, You W (2016) Vibration control for a flexible satellite system with output constraints. Nonlinear Dyn 85(4):1–14CrossRefzbMATHGoogle Scholar
  23. 23.
    He W, Ge SS (2015) Dynamic modeling and vibration control of a flexible satellite. IEEE Trans Aerosp Electron Syst 51(2):1422–1431CrossRefGoogle Scholar
  24. 24.
    Zhou D, Fan JX (2013) Boundary control in the attitude maneuvering of tethered space solar power satellite. J Vib Eng 26(1):41–47Google Scholar
  25. 25.
    He W, Zhang S (2017) Control design for nonlinear flexible wings of a robotic aircraft. IEEE Trans Control Syst Technol 25(1):351–357CrossRefGoogle Scholar
  26. 26.
    He W, Meng T, Zhang S, Ge Q, Sun C (2018) Trajectory tracking control for the flexible wings of a micro aerial vehicle. IEEE Trans Syst Man Cybern: Syst 48(12):2431–2441CrossRefGoogle Scholar
  27. 27.
    Krupa M, Poth W, Schagerl M, Steindl A, Steiner W, Troger H, Wiedermann G (2006) Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn 43(1):73–96CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Meng T, He W (2016) Lyapunov-based control of a tethered satellite system. IET Control Theory Appl 10(8):956–964CrossRefMathSciNetGoogle Scholar
  29. 29.
    Meng T, He W (2018) Iterative learning control of a robotic arm experiment platform with input constraint. IEEE Trans Ind Electron 65(1):664–672CrossRefGoogle Scholar
  30. 30.
    He W, He X, Zou M, Li H (2018) PDE model-based boundary control design for a flexible robotic manipulator with input backlash. IEEE Trans Control Syst Technol 27(2):790–797CrossRefGoogle Scholar
  31. 31.
    Song A, Tian X, Israeli E, Galvao R, Bishop K, Swartz S, Breuer K (2008) Aeromechanics of membrane wings with implications for animal flight. AIAA J 46(8):2096–2106CrossRefGoogle Scholar
  32. 32.
    Hu YR, Ng A (2005) Active robust vibration control of flexible structures. J Sound Vib 288(1):43–56CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Zhong C, Chen Z, Guo Y (2017) Attitude control for flexible spacecraft with disturbance rejection. IEEE Trans Aerosp Electron Syst 53:101–110CrossRefGoogle Scholar
  34. 34.
    Kurode S, Dixit P (2013) Sliding mode control of flexible link manipulator using states and disturbance estimation. Int J Adv Mechatron Syst 5(2):129–137CrossRefGoogle Scholar
  35. 35.
    Hu Q, Ma G, Xie L (2008) Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica 44(2):552–559CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Bu X, Wu X, Wei D, Huang J (2016) Neural-approximation-based robust adaptive control of flexible air-breathing hypersonic vehicles with parametric uncertainties and control input constraints. Inf Sci 346–347:29–43CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Bang JS, Shim H, Sang KP, Jin HS (2010) Robust tracking and vibration suppression for a two-inertia system by combining backstepping approach with disturbance observer. IEEE Trans Ind Electron 57(9):3197–3206CrossRefGoogle Scholar
  38. 38.
    Yan G, Wu H-N, Wang JW, Lei G (2014) Feedback control design with vibration suppression for flexible air-breathing hypersonic vehicles. Sci China Inf Sci 57(3):1–14CrossRefzbMATHGoogle Scholar
  39. 39.
    Riggs RV, Roberts PS, Divita MA, Niewczyk P, Granger CV (2014) Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans Ind Electron 61(8):4126–4133CrossRefGoogle Scholar
  40. 40.
    Tee KP, Ge SS, Li H, Ren B (2011) Control of nonlinear systems with time-varying output constraints. Automatica 47(11):2511–2516CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Liu Z, Liu J, Wang L (2018) Disturbance observer based attitude control for flexible spacecraft with input magnitude and rate constraints. Aerosp Sci Technol 72:486–492CrossRefGoogle Scholar
  42. 42.
    Hu Q (2009) Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn 55(4):301–321CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Hu Q (2009) Robust adaptive backstepping attitude and vibration control with \(L_2\)-gain performance for flexible spacecraft under angular velocity constraint. J Sound Vib 327(3–5):285–298CrossRefGoogle Scholar
  44. 44.
    Wang N, Yao XM, Li WS (2015) Nonlinear disturbance-observer-based sliding mode control for flexible air-breathing hypersonic vehicles. Math Probl Eng 2015(7):1–15MathSciNetzbMATHGoogle Scholar
  45. 45.
    Huang W, Jia Y (2015) Sliding mode fault-tolerant control for air-breathing hypersonic vehicles with external disturbances. In: Chinese intelligent systems conference, pp 243–251Google Scholar
  46. 46.
    He W, Ge SS, How BVE, Choo YS (2014) Dynamics and control of mechanical systems in offshore engineering. Springer, LondonCrossRefGoogle Scholar
  47. 47.
    Nair RR, Behera L, Kumar S (2017) Event-triggered finite-time integral sliding mode controller for consensus-based formation of multirobot systems with disturbances. IEEE Trans Control Syst Technol 27(1):39–47CrossRefGoogle Scholar
  48. 48.
    Julai S, Tokhi MO (2012) Active vibration control of flexible plate structures with distributed disturbances. J Low Freq Noise Vib Active Control 31(2):123–150CrossRefGoogle Scholar
  49. 49.
    Ohsumi A, Sawada Y (1993) Active control of flexible structures subject to distributed and seismic disturbances. J Dyn Syst Meas Control 115(115):649–657CrossRefzbMATHGoogle Scholar
  50. 50.
    Jiang T, Liu J, He W (2016) Boundary control for a flexible manipulator with a robust state observer. J Vib Control 24(2):260–271Google Scholar
  51. 51.
    Fan QY, Yang GH (2015) Adaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances. IEEE Trans Neural Netw Learn Syst 27(1):165–177CrossRefMathSciNetGoogle Scholar
  52. 52.
    Kim H, Shin KG (1994) On the maximum feedback delay in a linear/nonlinear control system with input disturbances caused by controller-computer failures. IEEE Trans Control Syst Technol 2(2):110–122CrossRefGoogle Scholar
  53. 53.
    Chen X, Fukuda T (2015) Robust sliding-mode tip position control for flexible arms. IEEE Trans Ind Electron 48(6):1048–1056CrossRefGoogle Scholar
  54. 54.
    Wang W, Wen C (2010) Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12):2082–2091CrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    Zhou J, Wen C (2008) Adaptive backstepping control of uncertain systems. Springer, BerlinzbMATHGoogle Scholar
  56. 56.
    Wang YW, Wen C, Yang M, Xiao JW (2008) Adaptive control and synchronization for chaotic systems with parametric uncertainties. Phys Lett A 372(14):2409–2414CrossRefzbMATHGoogle Scholar
  57. 57.
    Hu Q, Ma G, Xie L (2008) Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Pergamon Press, OxfordGoogle Scholar
  58. 58.
    Hu X, Wu L, Hu C, Gao H (2013) Adaptive fuzzy integral sliding mode control for flexible air-breathing hypersonic vehicles subject to input nonlinearity. J Aerosp Eng 26(4):721–734CrossRefGoogle Scholar
  59. 59.
    Chen M, Ren BB, Wu QX, Jiang CS (2015) Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China 58(7):1–12MathSciNetGoogle Scholar
  60. 60.
    Wu H-N, Li HX (2008) H\(_{\infty }\) fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints. IEEE Trans Fuzzy Syst 16(2):502–516CrossRefMathSciNetGoogle Scholar
  61. 61.
    Chen M, Ge SS, Ren B (2011) Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Pergamon Press, OxfordGoogle Scholar
  62. 62.
    Junteng Ma ZWTC, Jin D, Wen H (2018) Boundary control of a flexible manipulator based on a high order disturbance observer with input saturation. Shock Vib 2018(5):1–10Google Scholar
  63. 63.
    Zhou J, Zhang C, Wen C (2007) Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans Autom Control 52(3):503–509CrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    Wen C, Zhou J (2007) Decentralized adaptive stabilization in the presence of unknown backlash-like hysteresis. Automatica 43(3):426–440CrossRefMathSciNetzbMATHGoogle Scholar
  65. 65.
    He W, He X, Sun C (2017) Vibration control of an industrial moving strip in the presence of input deadzone. IEEE Trans Ind Electron 64:4680–4689CrossRefGoogle Scholar
  66. 66.
    He W, Ge SS, Zhang S (2011) Adaptive boundary control of a flexible marine installation system. Automatica 47(12):2728–2734CrossRefMathSciNetzbMATHGoogle Scholar
  67. 67.
    Qu Z (2001) Robust and adaptive boundary control of a stretched string on a moving transporter. IEEE Trans Autom Control 46(3):470–476CrossRefMathSciNetzbMATHGoogle Scholar
  68. 68.
    He W, He X, Ge SS (2015) Boundary output feedback control of a flexible string system with input saturation. Nonlinear Dyn 80(1–2):871–888CrossRefMathSciNetzbMATHGoogle Scholar
  69. 69.
    Rao SS, Pan TS, Venkayya VB (1990) Modeling, control, and design of flexible structures: a survey. Appl Mech Rev 43(5):99–117CrossRefGoogle Scholar
  70. 70.
    He W, Zhang S, Ge SS (2014) Adaptive boundary control of a nonlinear flexible string system. IEEE Trans Control Syst Technol 22(3):1088–1093CrossRefGoogle Scholar
  71. 71.
    He W, Ge SS (2015) Vibration control of a flexible string with both boundary input and output constraints. IEEE Trans Control Syst Technol 23(4):1245–1254CrossRefGoogle Scholar
  72. 72.
    Smyshlyaev A, Guo BZ, Krstic M (2009) Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback. IEEE Trans Autom Control 54(5):1134–1140CrossRefMathSciNetzbMATHGoogle Scholar
  73. 73.
    \(\ddot{O}\)mer M (2002) Dynamic boundary control of a Euler-Bernoulli beam. IEEE Trans Autom Control 37(5):639–642Google Scholar
  74. 74.
    Shifman JJ (1993) Lyapunov functions and the control of the Euler-Bernoulli beam. Int J Control 57(4):971–990CrossRefMathSciNetzbMATHGoogle Scholar
  75. 75.
    Ge SS, Zhang S, He W (2011) Modeling and control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance. Int J Control 84(5):947–960CrossRefzbMATHGoogle Scholar
  76. 76.
    He W, Zhang S, Ge SS, Liu C (2014) Adaptive boundary control for a class of inhomogeneous Timoshenko beam equations with constraints. IET Control Theory Appl 8(14):1285–1292CrossRefMathSciNetGoogle Scholar
  77. 77.
    \(\ddot{O}\)mer M (1992) Dynamic boundary control of the Timoshenko beam. Automatica 28(28):1255–1260Google Scholar
  78. 78.
    He W, Zhang S, Ge SS (2013) Boundary output-feedback stabilization of a Timoshenko beam using disturbance observer. IEEE Trans Ind Electron 60(11):5186–5194CrossRefGoogle Scholar
  79. 79.
    Zhang X, Xu W, Nair SS, Chellaboina V (2005) PDE modeling and control of a flexible two-link manipulator. IEEE Trans Control Syst Technol 13(2):301–312CrossRefGoogle Scholar
  80. 80.
    Paranjape AA, Chung SJ, Hilton HH, Chakravarthy A (2012) Dynamics and performance of tailless micro aerial vehicle with flexible articulated wings. AIAA J 50(50):1177–1188CrossRefGoogle Scholar
  81. 81.
    Ratti J, Vachtsevanos G (2010) A biologically-inspired micro aerial vehicle. J Intell Robot Syst 60(1):153–178CrossRefzbMATHGoogle Scholar
  82. 82.
    Liu Z, Liu J, He W (2017) An adaptive iterative learning algorithm for boundary control of a flexible manipulator. Int J Adapt Control Signal Process 31(6):903–916CrossRefMathSciNetzbMATHGoogle Scholar
  83. 83.
    Yang H, Liu J, Lan X (2015) Observer design for a flexible-link manipulator with PDE model. J Sound Vib 341:237–245CrossRefGoogle Scholar
  84. 84.
    Sun H, Yang Z, Meng B (2015) Tracking control of a class of non-linear systems with applications to cruise control of air-breathing hypersonic vehicles. Int J Control 88(5):885–896MathSciNetzbMATHGoogle Scholar
  85. 85.
    Zhang W, Fan N, Wang Z, Wu Y (2012) Modeling and aerodynamic analysis of a ducted-fan micro aerial vehicle. In: International conference on modelling, identification and control, pp 768–773Google Scholar
  86. 86.
    Duan H, Li Q (2010) Dynamic model and attitude control of flapping wing micro aerial vehicle. In: IEEE international conference on robotics and biomimetics, pp 451–456Google Scholar
  87. 87.
    Zuo D, Chen W, Peng S, Zhang W (2006) Modeling and simulation study of an insect-like flapping-wing micro aerial vehicle. Adv Robot 20(7):807–824CrossRefGoogle Scholar
  88. 88.
    He W, Meng T, He X, Sun C (2019) Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances. IEEE Trans Cybern 49(4):1524–1535CrossRefGoogle Scholar
  89. 89.
    Cao F, Liu J (2017) Vibration control for a rigid-flexible manipulator with full state constraints via barrier Lyapunov function. J Sound Vib 406:237–252CrossRefGoogle Scholar
  90. 90.
    Abe A (2009) Trajectory planning for residual vibration suppression of a two-link rigid-flexible manipulator considering large deformation. Mech Mach Theory 44(9):1627–1639CrossRefzbMATHGoogle Scholar
  91. 91.
    Khorrami F, Zheng S (1992) An inner/outer loop controller for rigid-flexible manipulators. J Dyn Syst Meas Control 114(4):580–588CrossRefzbMATHGoogle Scholar
  92. 92.
    Zhang L, Liu J (2012) Observer-based partial differential equation boundary control for a flexible two-link manipulator in task space. IET Control Theory Appl 6(13):2120–2133CrossRefMathSciNetGoogle Scholar
  93. 93.
    Zhang L, Liu J (2012) Nonlinear PDE observer design for a flexible two-link manipulator. In: American control conference, pp 5336–5341Google Scholar
  94. 94.
    Zhang X, Xu W, Nair SS, Chellaboina V (2002) PDE modeling and control of a flexible two-link manipulator. In: American control conference, pp 3796–3801Google Scholar
  95. 95.
    Ganesan N, Engels RC (1992) Timoshenko beam finite elements using the assumed modes method. J Sound Vib 156(1):109–123CrossRefzbMATHGoogle Scholar
  96. 96.
    Cai G, Hong J (2005) Assumed mode method of a rotating flexible beam. Acta Mech Sin 37(1):48–56Google Scholar
  97. 97.
    Lei W, Liu C, Yu-Lin HE, Hua L, Xin J (2012) Dynamic analysis of a wind turbine base on assumed mode method. J Vib Shock 31(11):122–126Google Scholar
  98. 98.
    Wang F, Chen S (1996) A method to determine the boundary conditions of the finite element model of a slender beam using measured modal parameters. J Vib Acoust 118(3):474–478CrossRefGoogle Scholar
  99. 99.
    Sahu AK, Das S (2016) Comparison of transfer mass matrix method with finite element method for modal analysis of beams. Int J Eng Tech Res 5(3):98–101Google Scholar
  100. 100.
    Apiwattanalunggarn P, Shaw SW, Pierre C, Jiang DY (2003) Finite-element-based nonlinear modal reduction of a rotating beam with large-amplitude motion. J Vib Control 9(3–4):235–263CrossRefMathSciNetzbMATHGoogle Scholar
  101. 101.
    Yang L, Vitchev N, Yu Z (2010) Modal analysis of practical quartz resonators using finite element method. IEEE Trans Ultrason Ferroelectr Freq Control 57(2):292–298CrossRefGoogle Scholar
  102. 102.
    Chu MT, Datta B, Lin WW, Xu S (2012) Spillover phenomenon in quadratic model updating. AIAA J 46(46):420–428Google Scholar
  103. 103.
    Samejima T, Yamamoto D (2002) Active modal control of sound fields by finite element modeling and \(H_{\infty }\) control theory. Acoust Sci Technol 23(6):313–322CrossRefGoogle Scholar
  104. 104.
    Tang S, Xie C (2011) State and output feedback boundary control for a coupled PDE-ODE system. Syst Control Lett 60(8):540–545CrossRefMathSciNetzbMATHGoogle Scholar
  105. 105.
    Smyshlyaev A, Krstic M (2009) Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Syst Control Lett 58(8):617–623CrossRefMathSciNetzbMATHGoogle Scholar
  106. 106.
    Cheng MB (2011) Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica 47(2):381–387CrossRefMathSciNetzbMATHGoogle Scholar
  107. 107.
    Mlayeh R, Toumi S, Beji L (2018) Backstepping boundary observer based-control for hyperbolic PDE in rotary drilling system. Appl Math Comput 322:66–78MathSciNetzbMATHGoogle Scholar
  108. 108.
    Guo BZ, Jin FF (2013) The active disturbance rejection and sliding mode control approach to the stabilization of the Euler-Bernoulli beam equation with boundary input disturbance. Automatica 49(9):2911–2918CrossRefMathSciNetzbMATHGoogle Scholar
  109. 109.
    Guo BZ, Zhou HC, Al-Fhaid AS, Younas AMM, Asiri A (2014) Stabilization of Euler-Bernoulli beam equation with boundary moment control and disturbance by active disturbance rejection control and sliding mode control approaches. J Dyn Control Syst 20(4):539–558CrossRefMathSciNetzbMATHGoogle Scholar
  110. 110.
    Guo BZ, Jin FF (2013) Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input. IEEE Trans Autom Control 58(5):1269–1274CrossRefMathSciNetzbMATHGoogle Scholar
  111. 111.
    Zhao ZL, Guo BZ (2013) Active disturbance rejection control to stabilize one-dimensional wave equation with interior domain anti-damping and boundary disturbance. Control Theory Appl 30(12):1553–1563zbMATHGoogle Scholar
  112. 112.
    He W, Meng T, Huang D, Li X (2018) Adaptive boundary iterative learning control for an Euler-Bernoulli beam system with input constraint. IEEE Trans Neural Netw Learn Syst 29(5):1539–1549CrossRefMathSciNetGoogle Scholar
  113. 113.
    He W, Meng T, Zhang S, Liu J-K, Li G, Sun C (2017) Dual-loop adaptive iterative learning control for a Timoshenko beam with output constraint and input backlash. IEEE Trans Syst Man Cybern: Syst 49(5):1027–1038CrossRefGoogle Scholar
  114. 114.
    Li H, Wang J, Lam HK, Zhou Q, Du H (2016) Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans Syst Man Cybern: Syst 46:1654–1663CrossRefGoogle Scholar
  115. 115.
    Doh TY, Ryoo JR (2008) Feedback-based iterative learning control for MIMO LTI systems. Int J Control Autom Syst 6(2):269–277Google Scholar
  116. 116.
    Zhang CL, Li JM (2015) Adaptive iterative learning control of non-uniform trajectory tracking for strict feedback nonlinear time-varying systems with unknown control direction. Appl Math Modell 39(10–11):2942–2950CrossRefMathSciNetzbMATHGoogle Scholar
  117. 117.
    Chin I, Qin SJ, Lee KS, Cho M (2004) A two-stage iterative learning control technique combined with real-time feedback for independent disturbance rejection. Automatica 40(11):1913–1922CrossRefMathSciNetzbMATHGoogle Scholar
  118. 118.
    Li X, Xu J-X, Huang D (2014) An iterative learning control approach for linear time-invariant systems with randomly varying trial lengths. IEEE Trans Autom Control 59(7):1954–1960CrossRefzbMATHGoogle Scholar
  119. 119.
    Chi R, Hou Z, Jin S, Wang D, Chien C-J (2015) Enhanced data-driven optimal terminal ILC using current iteration control knowledge. IEEE Trans Neural Netw Learn Syst 26(11):2939–2948CrossRefMathSciNetGoogle Scholar
  120. 120.
    Liu D, Wang D, Li H (2014) Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach. IEEE Trans Neural Netw Learn Syst 25(2):418–428CrossRefGoogle Scholar
  121. 121.
    Xu J-X, Viswanathan B (2000) Adaptive robust iterative learning control with dead zone scheme. Automatica 36(1):91–99CrossRefMathSciNetzbMATHGoogle Scholar
  122. 122.
    Li X, Huang D, Chu B, Xu J-X (2016) Robust iterative learning control for systems with norm-bounded uncertainties. Int J Robust Nonlinear Control 26:697–718CrossRefMathSciNetzbMATHGoogle Scholar
  123. 123.
    Radac M-B, Precup R-E, Petriu EM (2015) Model-free primitive-based iterative learning control approach to trajectory tracking of MIMO systems with experimental validation. IEEE Trans Neural Netw Learn Syst 26(11):2925–2938CrossRefMathSciNetGoogle Scholar
  124. 124.
    Huang D, Xu J-X (2011) Steady-state iterative learning control for a class of nonlinear PDE processes. J Process Control 21(8):1155–1163CrossRefGoogle Scholar
  125. 125.
    Meng D, Jia Y, Du J (2015) Robust consensus tracking control for multiagent systems with initial state shifts, disturbances, and switching topologies. IEEE Trans Neural Netw Learn Syst 26(4):809–824CrossRefMathSciNetGoogle Scholar
  126. 126.
    Kim T-H, Zheng X, Sugie T (2007) Noise tolerant iterative learning control and identification for continuous-time systems with unknown bounded input disturbances. J Dyn Syst Meas Control 129(6):825–836CrossRefGoogle Scholar
  127. 127.
    Baolin Z, Gongyou T, Shi Z (2006) PD-type iterative learning control for nonlinear time-delay system with external disturbance. J Syst Eng Electron 17(3):600–605CrossRefzbMATHGoogle Scholar
  128. 128.
    Liu Y-J, Tang L, Tong S, Chen CLP, Li D-J (2015) Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems. IEEE Trans Neural Netw Learn Syst 26(1):165–176CrossRefMathSciNetGoogle Scholar
  129. 129.
    Sun M, Wang D (2002) Iterative learning control with initial rectifying action. Automatica 38(7):1177–1182CrossRefMathSciNetzbMATHGoogle Scholar
  130. 130.
    Zanchetta P, Degano M, Liu J, Mattavelli P (2013) Iterative learning control with variable sampling frequency for current control of grid-connected converters in aircraft power systems. IEEE Trans Ind Appl 49(4):1548–1555CrossRefGoogle Scholar
  131. 131.
    Huang D, Xu J-X, Li X, Xu C, Yu M (2013) D-type anticipatory iterative learning control for a class of inhomogeneous heat equations. Automatica 49(8):2397–2408CrossRefMathSciNetzbMATHGoogle Scholar
  132. 132.
    Chen F-M, Tsai JS-H, Liao Y-T, Guo S-M, Ho M-C, Shaw F-Z, Shieh L-S (2014) An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control. J Frankl Inst 351(2):1130–1150CrossRefzbMATHGoogle Scholar
  133. 133.
    Ma F, Li C (2011) Open-closed-loop PID-type iterative learning control for linear systems with initial state error. J Vib Control 17(12):1791–1797CrossRefMathSciNetzbMATHGoogle Scholar
  134. 134.
    Xu J-X, Tan Y (2003) Linear and nonlinear iterative learning control. Springer, BerlinzbMATHGoogle Scholar
  135. 135.
    Xu J-X, Yan R (2004) Iterative learning control design without a priori knowledge of the control direction. Automatica 40(10):1803–1809CrossRefMathSciNetzbMATHGoogle Scholar
  136. 136.
    Xu J-X, Tan Y, Lee T-H (2004) Iterative learning control design based on composite energy function with input saturation. Automatica 40(8):1371–1377CrossRefMathSciNetzbMATHGoogle Scholar
  137. 137.
    Andrey S, Miroslav K (2003) Explicit state and output feedback boundary controllers for partial differential equations. J Autom Control 13(2):1–9CrossRefGoogle Scholar
  138. 138.
    Krstic M, Smyshlyaev A (2008) Adaptive boundary control for unstable parabolic PDEs-Part I: Lyapunov design. IEEE Trans Autom Control 53(7):1575–1591CrossRefzbMATHGoogle Scholar
  139. 139.
    Rao SS, Sunar M (1994) Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey. Appl Mech Rev 47(4):56–57CrossRefGoogle Scholar
  140. 140.
    Krstic M, Smyshlyaev A (2008) Boundary control of PDEs: a course on backstepping designs. SIAMGoogle Scholar
  141. 141.
    Krstic M, Smyshlyaev A (2008) Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett 57(9):750–758CrossRefMathSciNetzbMATHGoogle Scholar
  142. 142.
    Smyshlyaev A, Krstic M (2009) Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Syst Control Lett 58:617–623CrossRefMathSciNetzbMATHGoogle Scholar
  143. 143.
    Meng T, He W, Liu J (2018) Boundary control for a vibrating string with asymmetrically constrained outputs. Int J Robust Nonlinear Control 28(10):798–807CrossRefMathSciNetzbMATHGoogle Scholar
  144. 144.
    He W, Zhang S, Ge SS (2013) Boundary control of a flexible riser with the application to marine installation. IEEE Trans Ind Electron 60(12):5802–5810CrossRefGoogle Scholar
  145. 145.
    Guo BZ, Kang W (2014) Lyapunov approach to the boundary stabilisation of a beam equation with boundary disturbance. Int J Control 87(5):925–939CrossRefMathSciNetzbMATHGoogle Scholar
  146. 146.
    Zhang S, Wang Q, Dong C, Ran M (2015) Active disturbance rejection control of air-breathing hypersonic vehicles based on backstepping method. In: Chiense control conference, pp 866–870Google Scholar
  147. 147.
    He W, Meng T, Jin-Kun L, Qin H (2015) Boundary control of a timoshenko beam system with input dead-zone. Int J Control 88(6):1257–1270CrossRefMathSciNetzbMATHGoogle Scholar
  148. 148.
    He W, Ge SS (2011) Robust adaptive boundary control of a vibrating string under unknown time-varying disturbance. IEEE Trans Control Syst Technol 20(1):48–58Google Scholar
  149. 149.
    Zhou J, Wen C, Wang W (2009) Adaptive backstepping control of uncertain systems with unknown input time-delay. Automatica 45(6):1415–1422CrossRefMathSciNetzbMATHGoogle Scholar
  150. 150.
    Zhou J, Wen C, Li T (2012) Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity. IEEE Trans Autom Control 57(10):2627–2633CrossRefMathSciNetzbMATHGoogle Scholar
  151. 151.
    Hu Q, Meng Y, Wang C, Zhang Y (2018) Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities. Aerosp Sci Technol 73:289–299CrossRefGoogle Scholar
  152. 152.
    An H, Wu Q, Xia H, Wang C (2018) Fast tracking control of air-breathing hypersonic vehicles with time-varying uncertain parameters. Nonlinear Dyn 91(3):1835–1852CrossRefzbMATHGoogle Scholar
  153. 153.
    Mulder EF, Kothare MV, Morari M (2001) Multivariable anti-windup controller synthesis using linear matrix inequalities. Automatica 37(9):1407–1416CrossRefzbMATHGoogle Scholar
  154. 154.
    Grimm G, Hatfield J, Postlethwaite I, Teel AR, Turner MC, Zaccarian L (2003) Antiwindup for stable linear systems with input saturation: an LMI-based synthesis. IEEE Trans Autom Control 48(9):1509–1525CrossRefMathSciNetzbMATHGoogle Scholar
  155. 155.
    Wen C, Zhou J, Liu Z, Su H (2011) Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans Autom Control 56(7):1672–1678CrossRefMathSciNetzbMATHGoogle Scholar
  156. 156.
    Boškovic JD, Li S-M, Mehra RK (2001) Robust adaptive variable structure control of spacecraft under control input saturation. J Guid Control Dyn 24(1):14–22CrossRefGoogle Scholar
  157. 157.
    Hu Q, Xiao B (2012) Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation. Aerosp Sci Technol 23(1):63–74CrossRefGoogle Scholar
  158. 158.
    Visintin A (2013) Differential models of hysteresis. Springer Science & Business Media, BerlinGoogle Scholar
  159. 159.
    Ren B, Ge SS, Lee TH, Su C-Y (2009) Adaptive neural control for a class of nonlinear systems with uncertain hysteresis inputs and time-varying state delays. IEEE Trans Neural Netw 20(7):1148–1164CrossRefGoogle Scholar
  160. 160.
    Ren B, Ge SS, Su CY, Tong HL (2009) Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input. IEEE Trans Syst Man Cybern Part B (Cybern) 39(2):431–443CrossRefGoogle Scholar
  161. 161.
    Tao G, Kokotovi\(\acute{c}\) PV (1995) Adaptive control of plants with unknown hystereses. IEEE Trans Autom Control 40(2):200–212Google Scholar
  162. 162.
    Zhou J, Wen C, Zhang Y (2004) Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 49(10):1751–1759CrossRefMathSciNetzbMATHGoogle Scholar
  163. 163.
    Tao G, Kokotović PV (1995) Continuous-time adaptive control of systems with unknown backlash. IEEE Trans Autom Control 40(6):1083–1087CrossRefMathSciNetzbMATHGoogle Scholar
  164. 164.
    Ji H, Hou Z, Zhang R (2016) Adaptive iterative learning control for high-speed trains with unknown speed delays and input saturations. IEEE Trans Autom Sci Eng 13(1):260–273CrossRefGoogle Scholar
  165. 165.
    Zhang R, Hou Z, Chi R, Ji H (2015) Adaptive iterative learning control for nonlinearly parameterised systems with unknown time-varying delays and input saturations. Int J Control 88(6):1133–1141CrossRefMathSciNetzbMATHGoogle Scholar
  166. 166.
    Zhang R, Hou Z, Ji H, Yin C (2016) Adaptive iterative learning control for a class of non-linearly parameterised systems with input saturations. Int J Syst Sci 47(5):1084–1094CrossRefMathSciNetzbMATHGoogle Scholar
  167. 167.
    Jiang P, Chen H (2004) Adaptive iterative learning control for nonlinear systems with unknown control gain. J Dyn Syst Meas Control 126(4):916–920CrossRefGoogle Scholar
  168. 168.
    Ji H, Hou Z, Fan L, Lewis FL (2016) Adaptive iterative learning reliable control for a class of non-linearly parameterised systems with unknown state delays and input saturation. IET Control Theory Appl 10(17):2160–2174CrossRefMathSciNetGoogle Scholar
  169. 169.
    Hardy GH, Littlewood JE, Polya G (1934) Inequalities. Cambridge University, CambridgeGoogle Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Academy of Mathematics and Systems ScienceBeijingChina
  2. 2.University of Science and Technology BeijingBeijingChina

Personalised recommendations