Advertisement

A Novel Graphical User Interface-Based Toolbox for Optimization and Design of Linear Antenna Array

  • Guru Prasad Mishra
  • Shibanee Dash
  • Saumendra Kumar MohantyEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 109)

Abstract

The desired performance parameters of a specific linear antenna array (LAA) are a highly nonlinear function of input parameters such as antenna length (l) and spacing (d) among the antenna elements and need to be optimized to get all the desired performance parameters. This paper presents popular bio-motivated global optimization techniques such as particle swarm optimization (PSO) and cuckoo search (CS), which are being applied to LAA design to enhance directivity and low sidelobe level. A comparison between two optimization techniques has also been made. To analyze the antenna structure, a numerical method called method of moments has been used, and mutual coupling is taken into account between antenna elements. MATLAB is used for the design and optimization of LAA, and CST microwave studio is used to validate the results obtained. Finally, a graphical user interface-based toolbox is developed for the design and optimization of LAA in MATLAB and to reduce the complexity for a beginner.

Keywords

Cuckoo search Directivity Graphical user interface Linear antenna array Method of moments Multi-objective function PSO 

References

  1. 1.
    Wang X, Gao F, Liu Q (2004) Design of antenna array used as smart antenna for TD-SCDMA systems. Int Conf Comm Circuits Syst 1:176–180Google Scholar
  2. 2.
    Balanis CA (2005) Antenna theory: analysis and design, 3rd edn. Wiley, LondonGoogle Scholar
  3. 3.
    Kummer WH (1992) Basic array theory. Proc IEEE 9(3):127–139CrossRefGoogle Scholar
  4. 4.
    Hejres JA (2004) Adaptive sidelobe using the positions of selected elements of the phased antenna array. IEEE Antennas Propag Soc Symp 3:2655–2658CrossRefGoogle Scholar
  5. 5.
    Lee A, Chen L, Wei J, Hwang HK (2005) Simulation study of wideband interference rejection using adaptive array antenna. In: IEEE aerospace conference, pp 1–6Google Scholar
  6. 6.
    Bossavit A (1998) Computational electromagnetism. Eng Sci Educ J 7(6):275–281zbMATHGoogle Scholar
  7. 7.
    Kettunen L (2001) Fields and circuits in computational electromagnetism. IEEE Trans Electromagn 37(5):3393–3396Google Scholar
  8. 8.
    Abd-Alhameed RA, McEwan NJ, Excell PS, Ibrahim MM, Hejazi ZM, Musa M (1997) New procedure for design of microstrip patch antennas using method of moments. In: Tenth International Conference on Antennas and Propagation, vol 1, no. 436, pp 178–181Google Scholar
  9. 9.
    Colak D, Newman EH (1998) The multiple sweep method of moments (MSMM) design of wide-band antennas. IEEE Trans Antenna Propag 46(9):1365–1371CrossRefGoogle Scholar
  10. 10.
    Mishra GP, Jena MR, Mangaraj BB (2016) Investigation on design and performance of linear cantor array using strip dipole and V-dipole for UHWF band application. In: IEEE International Conference on Wireless Communication, Signal Processing and Networking, pp 1810–1814Google Scholar
  11. 11.
    Wang W, Gong S, Wang X, Guan Y, Jiang W (2010) Differential evolution algorithm and method of moments for the design of Low-RCS antenna. IEEE Antennas Wirel Propag Lett 9:295–298CrossRefGoogle Scholar
  12. 12.
    Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin, HeidelbergzbMATHGoogle Scholar
  13. 13.
    Johnson J, Rahmat-Samii Y (1997) Genetic algorithms in engineering electromagnetics. IEEE Trans Antennas Propag Magazine 39(2):7–21CrossRefGoogle Scholar
  14. 14.
    Yan KK, Lu Y (1997) Sidelobe reduction in array pattern synthesis using genetic algorithm. IEEE Trans Antennas Propag 45:1117–1122CrossRefGoogle Scholar
  15. 15.
    Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propag 52:397–407MathSciNetCrossRefGoogle Scholar
  16. 16.
    Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, application, and resources. In: Proceedings of IEEE conference on evolutionary computation, pp 81–86Google Scholar
  17. 17.
    Khodier M, Al-Aqeel M (2009) Linear and circular array optimization: a study using particle swarm intelligence. Prog Electromagn Res 15:347–373CrossRefGoogle Scholar
  18. 18.
    Nguyen TH, Morishita H, Koyanagi Y, Izui K, Nishiwaki A (2013) A multi-level optimization method using PSO for the optimal design of an L-Shaped folded monopole antenna array. IEEE Trans Ant Propag 62(1):209–215Google Scholar
  19. 19.
    Mohanty SK, Sahoo AB, Pradhan H, Mangaraj BB (2017) Comparative study of PSO and CS for optimization of 3 x 5 planar antenna array using MOM. Int J Inf Commun Technol 11(1):128–149Google Scholar
  20. 20.
    Baskar S, Alphones A, Suganthan PN, Liang JJ (2005) Design of Yagi-Uda antennas using comprehensive learning particle swarm optimization. IEEE Proc Microwaves Antennas Propag 152(5):340–346CrossRefGoogle Scholar
  21. 21.
    Mohanty SK, Mishra GP, Mangaraj BB (2014) Implementing Taguchi and Cuckoo Search to Optimize LAA. In: Annual IEEE India Conference (INDICON), 11–13 December 2014, pp 1–5Google Scholar
  22. 22.
    Building GUIs with MATLAB (1997) The math works, 5th edn.Google Scholar
  23. 23.
    Moshe Y (2004) GUI with Matlab. In: Signal and Image Processing Laboratory (SIPL)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Guru Prasad Mishra
    • 1
  • Shibanee Dash
    • 1
  • Saumendra Kumar Mohanty
    • 1
    Email author
  1. 1.Department of ECEFET, ITER, Siksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations