Advertisement

The Fractional Order PID Controller Design for BG Control in Type-I Diabetes Patient

  • Akshaya Kumar Patra
  • Anuja Nanda
  • Santisudha Panigrahi
  • Alok Kumar Mishra
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 109)

Abstract

This manuscript presents a SIMULINK model of glucose metabolism (GM) process and design of a fractional order proportional integral-derivative controller (FOPIDC) to regulate the blood glucose (BG) concentration in Type-I diabetes mellitus (TIDM) patients. In this control strategy, the conventional PID controller (CPIDC) is re-formulated with fractional orders of the integrator and differentiator to improve the control performance. The FOPIDC is a novel approach whose gains dynamically vary with respect to the error signal. The validation of improved control action of FOPIDC is established by comparative result investigation with other published control algorithms. The comparative results clearly reveal the better performance of the proposed approach to control the BG concentration within the normoglycaemic range in terms of accuracy, stability, and robustness.

Keywords

Diabetes Insulin dose Glucose concentration MID FOPIDC 

References

  1. 1.
    Chee F, Fernando T (2003) Closed-loop glucose control in critically ill patients using continuous glucose monitoring system (CGMS) in real time. IEEE Trans Inf Technol Biomed 7(4):43–53CrossRefGoogle Scholar
  2. 2.
    Kamath S, Vidyasagar S (2009) Simulation study on closed loop control algorithm of type 1 diabetes mellitus patients. IETE J Res 55:230–235CrossRefGoogle Scholar
  3. 3.
    Frederick C, Tyrone L (2003) Expert PID control system for blood glucose control in critically ill patients. Information technology in biomedicine. IEEE Trans 7(4):419–425Google Scholar
  4. 4.
    Sutradhar A, Chaudhuri S (2002) Analysis and design of an optimal PID controller for insulin dispenser system. J Inst Eng (India) 82(2):304–313Google Scholar
  5. 5.
    Ibbini M (2006) The PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients. J Med Eng Technol 30(2):83–92CrossRefGoogle Scholar
  6. 6.
    Singh M, Gupta JRP (2007) A new algorithm-based type-2 fuzzy controller for diabetic patient. Int J Biomed Eng Technol 1(1):18–40CrossRefGoogle Scholar
  7. 7.
    Patra AK, Rout PK (2015) An automatic insulin infusion system based on LQG control technique. Int J Biomed Eng Technol 17(3):252–275CrossRefGoogle Scholar
  8. 8.
    Chee F, Andrey V (2005) Optimal H∞ insulin injection control for blood glucose regulation in diabetic patients. IEEE Trans Biomed Eng 52(10):1625–1631CrossRefGoogle Scholar
  9. 9.
    Yasini S, Sistani MBN (2012) Knowledge-based Closed-loop control of blood glucose concentration in diabetic patients and comparison with H control technique. IETE J Res 58:328–336CrossRefGoogle Scholar
  10. 10.
    Patra AK, Rout PK (2014) Optimal H-infinity insulin injection control for blood glucose regulation in IDDM patient using physiological model. Int J Autom Control 8(4):309–322CrossRefGoogle Scholar
  11. 11.
    Gallardo H, Ana G (2013) High-order sliding-mode control for blood glucose: practical relative degree approach. Control Eng Pract 21(5):747–758CrossRefGoogle Scholar
  12. 12.
    Rmileh A, Gabin W (2012) Wiener sliding-mode control for artificial pancreas: a new nonlinear approach to glucose regulation. Comput Methods Programs Biomed 107:327–340CrossRefGoogle Scholar
  13. 13.
    Patra AK, Rout PK (2018) ‘Backstepping sliding mode Gaussian insulin injection control for blood glucose regulation in TIDM patient. J Dyn Sys Meas Control 140(9):091006–091006-15Google Scholar
  14. 14.
    Patra AK, Rout PK (2017) Adaptive sliding mode Gaussian controller for artificial pancreas in TIDM patient. J Process Control 58:23–27CrossRefGoogle Scholar
  15. 15.
    Patra AK, Mishra AK, Rout PK (2018) Backstepping model predictive controller for blood glucose regulation in type-I diabetes patient. IETE J Res.  https://doi.org/10.1080/03772063.2018.1493404CrossRefGoogle Scholar
  16. 16.
    Patra AK, Rout PK (2017) Adaptive continuous-time model predictive controller for implantable insulin delivery system in Type I diabetic patient. Opt Control Appl Methods 38(2):184–204CrossRefGoogle Scholar
  17. 17.
    Guyton JR, Foster RO (1978) A model of glucose-insulin homeostasis in man that incorporates the heterogenous fast pool theory of pancreatic insulin release. Diabetes Care 27(1):1027–1042CrossRefGoogle Scholar
  18. 18.
    Barger M, Rodbard D (1989) Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care 12(1):725–736CrossRefGoogle Scholar
  19. 19.
    Lehmann ED, Deutsch T (1992) Physiological model of glucose–insulin interaction in Type-1 diabetes mellitus. J Biomed Eng 14(3):235–242CrossRefGoogle Scholar
  20. 20.
    Lehmann ED, Deutsch T (1998) Compartmental models for glycaemic prediction and decision support in clinical diabetes care: promise and reality. Comput Methods Programs Biomed 56(1):193–204CrossRefGoogle Scholar
  21. 21.
    Sperr G (1997) Biosensor research targets medical diagnostics. Medical device and diagnostic industry magazine, Nov 1997Google Scholar
  22. 22.
    Cochin L, Cadwallender W (1997) Analysis and design of dynamic systems, 3rd edn. Addison-Wesley, New YorkGoogle Scholar
  23. 23.
    Bingul Z, Karahan O (2018) Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay. Opt Control Appl Methods 39(4):1431–1450MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Akshaya Kumar Patra
    • 1
  • Anuja Nanda
    • 1
  • Santisudha Panigrahi
    • 2
  • Alok Kumar Mishra
    • 1
  1. 1.Department of EEEITER, S‘O’A UniversityBhubaneswarIndia
  2. 2.Department of CSEITER, S‘O’A UniversityBhubaneswarIndia

Personalised recommendations