Application of Impedance Source Inverters

  • Hongpeng LiuEmail author
  • Zichao Zhou
  • Yuhao Li
  • Wentao Wu
  • Jiabao Jiang
  • Enda Shi


Impedance source inverters have attracted considerable attention in power decoupling, photovoltaic/wind power generation, and motor drive in recent years, because they can obtain high step-up boost ratio in a single stage by introducing an impedance network and special modulation strategy. This chapter presents an overview for the impedance source inverter in different applications, including the typical configurations, parameter design, and system control methods, as well as some examples.


  1. 1.
    M. Vilathgamuwa, D. Nayanasiri, S. Gamini, Power electronics for photovoltaic power systems, in Power Electronics for Photovoltaic Power Systems (Morgan & Claypool, 2015)Google Scholar
  2. 2.
    Y. Liu, H. Abu-Rub, Y. Wu, B. Ge, M. Trabelsi, Overview of double-line-frequency power decoupling techniques for single-phase Z-source/quasi-Z-source inverter, in IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society (Beijing, 2017), pp. 7704–7709Google Scholar
  3. 3.
    D. Sun, B. Ge, X. Yan, D. Bi, H. Zhang, Y. Liu, H. Abu-Rub, L. Ben-Brahim, F.Z. Peng, Modeling, impedance design, and efficiency analysis of quasi-Z source module in cascade multilevel photovoltaic power system. IEEE Trans. Ind. Electron. 61(11), 6108–6117 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, B. Ge, H. Abu-Rub, D. Sun, Comprehensive modeling of single-phase quasi-Z-source photovoltaic inverter to investigate low-frequency voltage and current ripple. IEEE Trans. Ind. Electron. 62(7), 4194–4202 (2015)CrossRefGoogle Scholar
  5. 5.
    W. Liang, B. Ge, Y. Liu, H. Abu-Rub, R.S. Balog, Y. Xue, Modeling, analysis, and impedance design of battery energy stored single-phase quasi-Z-source photovoltaic inverter system, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE) (2016), pp. 18–22Google Scholar
  6. 6.
    Y. Yu, Q. Zhang, B. Liang, S. Cui, Single-phase Z-source inverter: analysis and low-frequency harmonics elimination pulse width modulation, in 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (16–21 Sept. 2011), pp. 2260–2267Google Scholar
  7. 7.
    H. Zhang, B. Ge, Y. Liu, D. Sun, A hybrid modulation method for single-phase quasi-Z source inverter, in 2014 IEEE Energy Conversion Congress and Exposition (ECCE) (2014), pp. 4444–4449Google Scholar
  8. 8.
    Y. Liu, B. Ge, H. Abu-Rub, H. Sun, Hybrid pulse-width modulated single-phase quasi-Z-source grid-tie photovoltaic power system. IEEE Trans. Industr. Inf. 12(2), 621–632 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Liu, B. Ge, Y. Wu, P. Kakosimos, H. Abu-Rub, Pulse Width Amplitude Modulation Based Single-Phase Quasi-Z-Source Photovoltaic Inverter with Energy Storage Battery, in 2017 Thirty-second Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (26–30 Mar. 2017), pp. 1351–1356Google Scholar
  10. 10.
    Y. Li, Y. Liu, H. Abu-Rub, PWAM Controlled Quasi-Z Source Motor Drive, in 2017 IEEE International Symposium on Industrial Electronics (ISIE) (2017)Google Scholar
  11. 11.
    A. Vazquez Sieber, H. Haimovich, M.E. Romero, Control-oriented modelling and adaptive control of a single-phase quasi-Z-source inverter, in 2013—the 39th Annual Conference on IEEE Industrial Electronics Society (IECON) (10–13 Nov. 2013), pp. 572–577Google Scholar
  12. 12.
    Y. Zhou, H. Li, H. Li, X. Lin, A capacitance minimization control strategy for single-phase PV quasi-Z-source inverter, in 2015 Thirtieth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (15–19 Mar. 2015), pp. 1730–1735Google Scholar
  13. 13.
    B. Ge et al., Current ripple damping control to minimize impedance network for single-phase quasi-Z source inverter system. IEEE Trans. Industr. Inf. 12(3), 1043–1054 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Zhou, H. Li, H. Li, A single-phase PV quasi-Z-source inverter with reduced capacitance using modified modulation and double-frequency ripple suppression control. IEEE Trans. Power Electron. 31(3), 2166–2173 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Makovenko, O. Husev, J. Zakis, C. Roncero-Clemente, E. Romero-Cadaval, D. Vinnikov, Passive power decoupling approach for three-level single-phase impedance Source Inverter based on resonant and PID controllers, in 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) (2017), pp. 516–521Google Scholar
  16. 16.
    B. Ge et al., An active filter method to eliminate DC-side low-frequency power for a single-phase quasi-Z-source inverter. IEEE Trans. Industr. Electron. 63(8), 4838–4848 (2016)Google Scholar
  17. 17.
    Y. Liu, B. Ge, H. Abu-Rub, H. Sun, F.Z. Peng, Y. Xue, Model predictive direct power control for active power decoupled single-phase quasi-Z-source inverter. IEEE Trans. Industr. Inf. 12(4), 1550–1559 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Liu, B. Ge, H. Abu-Rub, An active power decoupling quasi-Z source cascaded multilevel inverter, in The 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON) (2016), pp. 24–27Google Scholar
  19. 19.
    Y. Li, W. Gao, J. Li, R. Zhang, F. Fang, Double line frequency ripple cancelling for single-phase quasi-Z-source inverter, in 2016 IEEE Energy Conversion Congress and Exposition (ECCE) (2016)Google Scholar
  20. 20.
    Y. Liu, B. Ge, H. Abu-Rub, A model predictive control for low-frequency ripple power elimination of active power filter integrated single-phase quasi-Z-source inverter, in 2017 IEEE International Conference on Industrial Technology (ICIT) (2017)Google Scholar
  21. 21.
    S.A. Singh, N.A. Azeez, S.S. Williamson, Capacitance reduction in a single phase quasi Z-source inverter using a hysteresis current controlled active power filter, in 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE) (2016), pp. 805–810Google Scholar
  22. 22.
    K. Ishaque, Z. Salam, A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. Ind. Electron. IEEE Trans. 60(8), 3195–3206 (2013)Google Scholar
  23. 23.
    A.H.M. Nordin, A.M. Omar, Modeling and simulation of photovoltaic (PV) array and maximum power point tracker (MPPT) for grid-connected PV system, in 2011 3rd International Symposium & Exhibition in Sustainable Energy & Environment (ISESEE) (Melaka, 2011), pp. 114–119Google Scholar
  24. 24.
    H. Rezk, A.M. Eltamaly, A comprehensive comparison of different MPPT techniques for photovoltaic systems. Sol. Energy 112, 1–11 (2015)CrossRefGoogle Scholar
  25. 25.
    M.A. Elgendy, B. Zahawi, D.J. Atkinson, Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 3(1), 21–33 (2012)CrossRefGoogle Scholar
  26. 26.
    M. Forouzesh, A. Baghramian, N. Salavati, Improved Y-source inverter for distributed power generation, in 2015 23rd Iranian Conference on Electrical Engineering (Tehran, 2015), pp. 1677–1681Google Scholar
  27. 27.
    M. Aravindan, V. Balaji, V. Saravanan, M. Arumugam, Topologies of single phase Z source inverters for photovoltaic systems, in 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE) (Bangalore, 2016), pp. 1–6Google Scholar
  28. 28.
    P.H. Zope, A.J. Patil, A. Somkuwar, Performance and simulation analysis of single-phase grid connected PV system based on Z-source inverter, in 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India (New Delhi, 2010), pp. 1–6Google Scholar
  29. 29.
    T. Ackermann, Wind Power in Power Systems (Wiley, New York, 2012)Google Scholar
  30. 30.
    F. Blaabjerg, Z. Chen, S.B. Kjaer, Power electronics as efficient interface in dispersed power generation system. IEEE Trans. Power Electron. 19, 1184–1194 (2004)CrossRefGoogle Scholar
  31. 31.
    F.Z. Peng, Z-source inverter. IEEE Trans. Ind. Appl. 39, 504–510 (Mar./Apr. 2003)Google Scholar
  32. 32.
    Z. Chen, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24(8), 1859–1875 (2009)CrossRefGoogle Scholar
  33. 33.
    M. Jamil, R. Gupta, M. Singh, A review of power converter topology used with PMSG based wind power generation, in 2012 IEEE Fifth Power India Conference (Murthal, 2012), pp. 1–6Google Scholar
  34. 34.
    H. Liu et al., High step-up Y-source inverter with reduced DC-link voltage spikes. IEEE Trans. Power Electron. 34(6), 5487–5499 (2019)CrossRefGoogle Scholar
  35. 35.
    J. Li, J. Liu, Z. Liu, Comparison of Z-source inverter and traditional two-stage boost-buck inverter in grid-tied renewable energy generation, in 2009 IEEE 6th International Power Electronics and Motion Control Conference (Wuhan, 2009), pp. 1493–1497Google Scholar
  36. 36.
    R. Bharanikumar, R. Senthilkumar, A.N. Kumar, Impedance Source Inverter for Wind Turbine Driven Permanent Magnet Generator, in 2008 Joint International Conference on Power System Technology and IEEE Power India Conference (New Delhi, 2008), pp. 1–7Google Scholar
  37. 37.
    U. Supatti, F.Z. Peng, Z-source inverter based wind power generation system, in 2008 IEEE International Conference on Sustainable Energy Technologies (Singapore, 2008), pp. 634–638Google Scholar
  38. 38.
    M. Shen, J. Wang, A. Joseph, F.Z. Peng, L.M. Tolbert, D.J. Adams, Constant boost control of the Z-source inverter to minimize current ripple and voltage stress. IEEE Trans. Ind. Appl. 42(3), 770–778 (May–June 2006)Google Scholar
  39. 39.
    F.Z. Peng, M. Shen, Z. Qian, Maximum boost control of the Zsource inverter. IEEE Trans. Power Electron. 20(4), 833–838 (2005)CrossRefGoogle Scholar
  40. 40.
    U. Supatti, F.Z. Peng, Z-source inverter with grid connected for wind power system, in Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE) (2009), pp. 398–403Google Scholar
  41. 41.
    J. Anderson, F.Z. Peng, Four quasi-Z-Source inverters, in PESC ‘08—39th IEEE Annual Power Electronics Specialists Conference, June 15, 2008–June 19, 2008 (Rhodes, Greece, 2008), pp. 2743–2749Google Scholar
  42. 42.
    Y. Liu, B. Ge, F.Z. Peng, H. Abu‐Rub, A.T. De Almeida, F.J.T.E. Ferreira, Quasi-Z‐source inverter based PMSG wind power generation system, in Proceedigs of IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 291–297Google Scholar
  43. 43.
    A. Hussien, M. Taha, O. A. Mahgoub, Design and control of a quasi-Z-source inverter based for wind power generation using PMSG, in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC) (Rome, 2015), pp. 2050–2055Google Scholar
  44. 44.
    Omar Ellabban, Haitham Abu-Rub, An overview for the Z-source converter in motor drive applications. Renew. Sustain. Energy Rev. 61, 537–555 (2016)CrossRefGoogle Scholar
  45. 45.
    A. Das, A.K. Dhakar, Z-Source inverter based permanent magnet brushless DC motor drive, in 2009 IEEE Power & Energy Society General Meeting (Calgary, AB, 2009), pp. 1–5Google Scholar
  46. 46.
    P. Liu, H. Liu, Permanent-magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter. IET Electr. Syst. Transp. 2(4), 178–185 (2012)CrossRefGoogle Scholar
  47. 47.
    M.H. Prabhu, SRM drives using Z-source inverter with the simplified fuzzy logic rule base. Int. Electr. Eng. J. (IEEJ) 5(2), 1280–1286 (2014)Google Scholar
  48. 48.
    V. Vijay, K.J. Shruthi, P.G. Kini, C. Viswanatha, M.S. Bhatt, Modified Z-source inverter based three phase induction motor drive for solar PV applications, in 2014 International Conference on Power Signals Control and Computations (EPSCICON) (Thrissur, 2014), pp. 1–5Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Northeast Electric Power UniversityJilinChina
  2. 2.Aalborg UniversityAalborgDenmark
  3. 3.Delta Electronic Enterprise Management (Shanghai) co., LtdShanghaiChina
  4. 4.China Southern Power Grid Co., LtdShenzhen Power Supply BureauShenzhenChina
  5. 5.State Grid Zhejiang Electric Power Company Hangzhou Power Supply CompanyHangzhouChina
  6. 6.Harbin Institute of TechnologyHarbinChina

Personalised recommendations