Advertisement

Technology of DC-Link Voltage Spikes Suppression

  • Hongpeng LiuEmail author
  • Zichao Zhou
  • Yuhao Li
  • Wentao Wu
  • Jiabao Jiang
  • Enda Shi
Chapter

Abstract

The introduction of coupled inductor renders the appearance of leakage inductance whatever cores or winding techniques are employed, which induces operating problems. For instance, when the coupled inductors impedance source inverters (CISI) transfer from shoot-through (ST) to non-shoot-through (NST) state, a great voltage spike will occur at the DC-link due to a sharp change in current through the leakage inductors. It will require higher rated switches and push up the production cost. Therefore, the DC-link voltage spikes should be avoided, and the lost energy on the leakage inductors is recycled through technology of dc-link voltage spikes suppression. This chapter will present several novel absorbing circuits implemented in CISIs that can suppress the dc-link voltage.

References

  1. 1.
    W. Qian, F.Z. Peng, H. Cha, Trans-z-source inverters. IEEE Trans. Power Electron. 26(12), 3453–3463 (2011)CrossRefGoogle Scholar
  2. 2.
    M.-K. Nguyen, Y.-C. Lim, Y.-G. Kim, TZ-source inverters. IEEE Trans. Ind. Electron. 60(12), 5686–5695 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Adamowicz, LCCT-z-source inverters, in Proceedings of EEEIC (2011), pp. 1–16Google Scholar
  4. 4.
    P.C. Loh, D. Li, F. Blaabjerg, Г-Z-source inverters. IEEE Trans. Power Electron. 28(11), 4880–4884 (2013)CrossRefGoogle Scholar
  5. 5.
    W. Mo, P.C. Loh, F. Blaabjerg, Asymmetrical Г-source inverters. IEEE Trans. Ind. Electron. 61(2), 637–647 (2014)CrossRefGoogle Scholar
  6. 6.
    Y.P. Siwakoti, G.E. Town, P.C. Loh, F. Blaabjerg, Y-source inverter, in 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (Galway, 2014), pp. 1–6Google Scholar
  7. 7.
    R.R. Ahrabi, M.R. Banaei, Improved Y-source DC–AC converter with continuous input current. IET Power Electron. 9(4), 801–808 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Hakemi, M. Sanatkar-Chayjani, M. Monfared, ∆-source impedance network. IEEE Trans. Ind. Electron. 64(10), 7842–7851 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Adamowicz, N. Strzelecka, T-source inverter. Electr. Rev. 85(10), 233–238 (2009)Google Scholar
  10. 10.
    M.-K. Nguyen, Y.-C. Lim, S.-J. Park, Improved trans-z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electron. 28(10), 4500–4510 (2013)CrossRefGoogle Scholar
  11. 11.
    Z. Aleem, M. Hanif, Operational analysis of improved Г-Z-Source inverter with clamping diode and its comparative evaluation. IEEE Trans. Ind. Electron. 64(12), 9191–9200 (2017)CrossRefGoogle Scholar
  12. 12.
    H. Liu, Y. Li, Z. Zhou, W. Wang, D. Xu, A family of low-spikes, high-efficiency Y-source inverters. IEEE Trans. Ind. Electron. 66(12), 9288–9300 (2019)CrossRefGoogle Scholar
  13. 13.
    Y. Ran, W. Wang, K. Liu, H.P. Liu, A power decoupling solution for improved single-phase Y-source inverter, in Proceeding of IETC Asia-Pacific (2017), pp. 1–5Google Scholar
  14. 14.
    Y.S. Liu, B.M. Ge, H. Abu-Rub, F. Blaabjerg, Single-phase z-source/quasi-z-source inverters and converters: an overview of double-line-frequency power-decoupling methods and perspectives. IEEE Ind. Electron. Mag. 12(2), 6–23 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Liu, Z. Zhou, K. Liu, P.C. Loh, W. Wang, D.G. Xu, F. Blaabjerg, High step-up Y-source inverter with reduced DC-link voltage spikes. IEEE Trans. Power Electron. 36(6), 5487–5499 (2018)CrossRefGoogle Scholar
  16. 16.
    MAGNETICS, 2017MPCC (2017) magnetics powder core catalog (2017)Google Scholar
  17. 17.
    H. Wang, F. Blaabjerg, Reliability of capacitors for DC-link applications in power electronic converters—an overview. IEEE Trans. Ind. Appl. 50(5), 3569–3578 (2014)CrossRefGoogle Scholar
  18. 18.
    International IAR Rectifier, PD-20879 (2014) 30EPH06PbF datasheet (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Northeast Electric Power UniversityJilinChina
  2. 2.Aalborg UniversityAalborgDenmark
  3. 3.Delta Electronic Enterprise Management (Shanghai) co., LtdShanghaiChina
  4. 4.China Southern Power Grid Co., LtdShenzhen Power Supply BureauShenzhenChina
  5. 5.State Grid Zhejiang Electric Power Company Hangzhou Power Supply CompanyHangzhouChina
  6. 6.Harbin Institute of TechnologyHarbinChina

Personalised recommendations