Advertisement

Three-Winding Impedance Source Inverter

  • Hongpeng LiuEmail author
  • Zichao Zhou
  • Yuhao Li
  • Wentao Wu
  • Jiabao Jiang
  • Enda Shi
Chapter

Abstract

The coupled inductors Z-source inverters (CISIs) can be divided into dual-winding impedance source inverters and three-winding impedance source inverters in general, where the three-winding impedance source inverter could be subdivided into Y-source inverter (YSI) [5], improved Y-source inverter (IYSI) [6], extend quasi-Y-source inverter (E-QYSI) [9], modified Y-source inverter (M-YSI) [15], and so on. This chapter will present these four three-winding impedance source inverters in detail.

References

  1. 1.
    Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P.C. Loh, G.E. Town, Impedance-source networks for electric power conversion Part I: a topological review. IEEE Trans. Power Electron. 30(2), 699–716 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Adamowicz, LCCT-z-source inverters, in Proceedings of the EEEIC (2011), pp. 1–16Google Scholar
  3. 3.
    P.C. Loh, D. Li, F. Blaabjerg, Г-Z-source inverters. IEEE Trans. Power Electron. 28(11), 4880–4884 (2013)CrossRefGoogle Scholar
  4. 4.
    Y.P. Siwakoti, P.c. Loh, F. Blaabjerg, G. Town, Y-Source impedance network, in Proceeding of the APEC 2014, Fort Worth, TX, (2014), pp. 3362–3366Google Scholar
  5. 5.
    Y.P. Siwakoti, G.E. Town, P.C. Loh, F. Blaabjerg, Y-source inverter, in 2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Galway, (2014), pp. 1–6Google Scholar
  6. 6.
    R.R. Ahrabi, M.R. Banaei, Improved Y-source DC-AC converter with continuous input current. IET Power Electron. 9(4), 801–808 (2016)CrossRefGoogle Scholar
  7. 7.
    Y.P. Siwakoti, P.C. Loh, F. Blaabjerg et al., Effects of leakage inductances on magnetically coupled Y-Source network. IEEE Trans. Power Electron. 29(11), 5662–5666 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.P. Siwakoti, F. Blaabjerg, P.C. Loh, Quasi-Y-source boost DC–DC converter. IEEE Trans. Power Electron. 30(12), 6514–6519 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Liu et al., Extended quasi-Y-source inverter with suppressed inrush and leakage effects. IET Power Electron. 12(4), 719–728 (2019)CrossRefGoogle Scholar
  10. 10.
    Magnetics Powder Core Catalog (2015). www.mag-inc.com
  11. 11.
    A. Hakemi, M. Sanatkar-Chayjani, M. Monfared, ∆-source impedance network. IEEE Trans. Power Electron. 64(10), 7842–7851 (2017)Google Scholar
  12. 12.
    M. Adamowicz, N. Strzelecka, T-source inverter. Electr. Rev. 85(10), 233–238 (2009)Google Scholar
  13. 13.
    M.-K. Nguyen, Y.-C. Lim, S.-J. Park, Improved trans-z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electron. 28(10), 4500–4510 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Aleem, M. Hanif, Operational analysis of improved Г-Z-Source inverter with clamping diode and its comparative evaluation. IEEE Trans. Industr. Electron. 64(12), 9191–9200 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Liu, Y. Li, Z. Zhou, H. Wu, A modified Y-Source inverter, in 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA (2019), pp. 3477–3482Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Northeast Electric Power UniversityJilinChina
  2. 2.Aalborg UniversityAalborgDenmark
  3. 3.Delta Electronic Enterprise Management (Shanghai) co., LtdShanghaiChina
  4. 4.China Southern Power Grid Co., LtdShenzhen Power Supply BureauShenzhenChina
  5. 5.State Grid Zhejiang Electric Power Company Hangzhou Power Supply CompanyHangzhouChina
  6. 6.Harbin Institute of TechnologyHarbinChina

Personalised recommendations