Advertisement

Developments of Impedance Source Inverters

  • Hongpeng LiuEmail author
  • Zichao Zhou
  • Yuhao Li
  • Wentao Wu
  • Jiabao Jiang
  • Enda Shi
Chapter

Abstract

The developments of impedance source inverters are presented in this chapter, where improvements such as boost ability enhancement and parameter optimization are presented based on which many popular and practical derived topologies from original Z-source inverter are introduced systematically. Section 3.2 introduces the topology improvements with constant boost ratio, which overcome the inherited drawbacks of original Z-source inverters without enhancing boost factors. Section 3.3 presents the family of high boost ratio impedance source inverters which is proposed to enhance the gain based on the previous impedance source inverters. Then a plenty of multilevel and multiplex impedance source inverters are presented to suit for various applications in Sect. 3.4. After that, several novel impedance source inverters with parameter optimization are unfolded in Sect. 3.5.

References

  1. 1.
    U.R. Prasanna, A.K. Rathore, Dual three-pulse modulation-based high-frequency pulsating DC link two-stage three-phase inverter for electric/hybrid/fuel cell vehicles applications. IEEE J. Emerg. Sel. Top. Power Electron. 2(3), 477–486 (2014)CrossRefGoogle Scholar
  2. 2.
    D. Debnath, K. Chatterjee, Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment. IEEE Trans. Industr. Electron. 62(7), 4148–4157 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.F. Wang, L.K. Xue, C.S. Wang, P. Wang, W. Li, Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage systems—circuit generation, analysis, and design. IEEE Trans. Power Electron. 31(8), 5547–5561 (2016)CrossRefGoogle Scholar
  4. 4.
    O. Ellabban, H. Abu-Rub, Z-Source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6–24 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Liu, H. Li, Y. Zhao, X. He, Z. J. Shen, 1 MHz cascaded Z-source inverters for scalable grid-interactive photovoltaic (PV) applications using GaN device, in Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 2738–2745Google Scholar
  6. 6.
    Y. Zhou, L. Liu, H. Li, A high-performance photovoltaic module-integrated converter (MIC) based on cascaded quasi-Z-source inverters (qZSI) Using eGaN FETs. IEEE Trans. Power Electron. 28(6), 2727–2738 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Sun, B. Ge, F.Z. Peng, H. Abu-Rub, D. Bi, Y. Liu, A new grid-connected PV system based on cascaded H-bridge quasi-Z source inverter, in Proceedings of the 2012 IEEE International Symposium on Industrial Electronics (ISIE) (2012), pp. 951–956Google Scholar
  8. 8.
    Y. Fayyad, L. Ben-Brahim, Multilevel cascaded Z source inverter for PV power generation system, in Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA) (2012), pp. 1–6Google Scholar
  9. 9.
    Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, A modular multilevel space vector modulation for photovoltaic quasi-Z-source cascade multilevel inverters, in Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 714–718Google Scholar
  10. 10.
    Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single-phase photovoltaic power system. IEEE Trans. Ind. Informat. 10(1), 399–407 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Xue, B. Ge, F.Z. Peng, Reliability, efficiency, and cost comparisons of MW scale photovoltaic inverters, in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 1627–1634Google Scholar
  12. 12.
    S. Qu, W. Yongyu, On control strategy of Z‐source inverter for grid integration of direct-driven wind power generator, in 31st Chinese Control Conference (CCC), pp. 6720–6723, 25–27 July 2012Google Scholar
  13. 13.
    X. Wang, D.M. Vilathgamuwa, K.J. Tseng, C.J. Gajanayake, Controller design for variable-speed permanent magnet wind turbine generators interfaced with Z-source inverter, in Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS) (2009), pp. 752–757Google Scholar
  14. 14.
    S.M. Dehghan, M. Mohamadian, A.Y. Varjani, A new variable-speed wind energy conversion system using permanent-magnet synchronous generator and Z-Source inverter. IEEE Trans. Energy Convers. 24(3), 714–724 (2009)CrossRefGoogle Scholar
  15. 15.
    U. Supatti, F.Z. Peng, Z-source inverter with grid connected for wind power system, in Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition (ECCE) (2009), pp. 398–403Google Scholar
  16. 16.
    T. Maity, H. Prasad, V.R. Babu, Study of the suitability of recently proposed quasi Z-source inverter for wind power conversion, in Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA) (2014), pp. 837–841Google Scholar
  17. 17.
    W.‐T. Franke, M. Mohr, F.W. Fuchs, Comparison of a Z-source inverter and a voltage‐source inverter linked with a DC/DC-boost-converter for wind turbines concerning their efficiency and installed semiconductor power, in Proceedings of the 2008 IEEE Power Electronics Specialists Conference (PESC) (2008), pp. 1814–1820Google Scholar
  18. 18.
    Y. Liu, B. Ge, F.Z. Peng, H. Abu-Rub, A.T. De Almeida, F.J.T.E. Ferreira, Quasi-Z-Source inverter based PMSG wind power generation system, in Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 291–297Google Scholar
  19. 19.
    B.K. Ramasamy, A. Palaniappan, S.M. Yakoh, Direct-drive low-speed wind energy conversion system incorporating axial-type permanent magnet generator and Z-source inverter with sensorless maximum power point tracking controller. IET Renew. Power Gener. 7(3), 284–295 (2013)CrossRefGoogle Scholar
  20. 20.
    F.Z. Peng, M. Shen, K. Holland, Application of Z-Source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans. Power Electron. 22(3), 1054–1061 (2007)CrossRefGoogle Scholar
  21. 21.
    S.M. Dehghan, M. Mohamadian, A. Yazdian, Hybrid electric vehicle based on bidirectional Z-Source nine-switch inverter. IEEE Trans. Veh. Commun. 59(6), 2641–2653 (2010)CrossRefGoogle Scholar
  22. 22.
    F. Guo, L. Fu, C. Lin, C. Li, W. Choi, J. Wang, Development of an 85-kW bidirectional quasi-Z-source inverter with DC-Link feed-forward compensation for electric vehicle applications. IEEE Trans. Power Electron. 28(12), 5477–5488 (2013)CrossRefGoogle Scholar
  23. 23.
    P. Liu, H.P. Liu, Permanent-magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter. IET Electrical Systems in Transportation 2(4), 178–185 (2012)CrossRefGoogle Scholar
  24. 24.
    Q. Lei, D. Cao, F.Z. Peng, Novel loss and harmonic minimized vector modulation for a current-fed quasi-Z-source inverter in HEV motor drive application. IEEE Trans. Power Electron. 29(3), 1344–1357 (2014)Google Scholar
  25. 25.
    F.Z. Peng, Z-source inverter. IEEE Trans. Ind. Applicat. 39(2), 504–510 (2003)CrossRefGoogle Scholar
  26. 26.
    J. Rabkowski, The bidirectional Z-source inverter for energy storage application, in Proceedings of the European Conference on Power Electronics and Applications, pp. 1–10, 2–5 Sept 2007Google Scholar
  27. 27.
    M. Shen, F.Z. Peng, Operation modes and characteristics of the Z-source inverter with small inductance or low power factor. IEEE Trans. Ind. Electron. 55(1), 89–96 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Tang, S. Xie, C. Zhang, Z. Xu, Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability. IEEE Trans. Power Electron. 24(2), 409–415 (2009)CrossRefGoogle Scholar
  29. 29.
    L. Yang, D. Qiu, B. Zhang, G. Zhang, A high-performance Z-source inverter with low capacitor voltage stress and small inductance, in Proceedings of the 29th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2331–2337, 16–20 Mar 2014Google Scholar
  30. 30.
    J. Wei, Y. Tang, S. Xie, Grid-connected PV system based on the series Z-source inverter, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, ICIEA (2010), pp. 532–537Google Scholar
  31. 31.
    Y. Zhu, M. Chen, X. Lee, Y. Tsutomu, A novel quasi-resonant soft-switching Z-source inverter, in Proceedings of the IEEE International Conference on Power and Energy (PECon), pp. 292–297, 2–5 Dec 2012Google Scholar
  32. 32.
    A.S. Khlebnikov, S.A. Kharitonov, Application of the Z-source converter for aircraft power generation systems, in Proceedings of the 9th International Workshop and Tutorials on Electron Devices and Materials, EDM, pp. 211–215, 1–5 July 2008Google Scholar
  33. 33.
    E.C. dos Santos, J.H.G. Muniz, E.P.X.P. Filho, E.R.C. Da Silva, Dc-ac three-phase fourwire Z-source converter with hybrid PWM strategy, in Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society, IECON, pp. 409–414, 7–10 Nov 2010Google Scholar
  34. 34.
    A.S. Khlebnikov, S.A. Kharitonov, P.A. Bachurin, A.V. Geist, D.V. Makarov, Modeling of dual Z-source inverter for aircraft power generation, in Proceedings of the International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 373–376, 30 June 2011–4 July 2011Google Scholar
  35. 35.
    P.A. Bachurin, D.V. Makarov, A.V. Geist, M.V. Balagurov, D.A. Shtein, Z-source inverter with neutral point, in Proceedings of the 14th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 255–258, 1–5 July 2013Google Scholar
  36. 36.
    V. Erginer, M.H. Sarul, Modified reduced common mode current modulation techniques for Z-Source inverter used in photovoltaic systems, in Proceedings of the 4th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 459–464, 13–14 Feb 2013Google Scholar
  37. 37.
    P.E.P. Ferraz, F. Bradaschia, M.C. Cavalcanti, F.A.S. Neves, G.M.S. Azevedo, A modified Z-source inverter topology for stable operation of transformerless photovoltaic systems with reduced leakage currents, in Proceedings of the 2011 Brazilian Power Electronics Conference (COBEP), pp. 615–622, 11–15 Sept 2011Google Scholar
  38. 38.
    J. Anderson, F.Z. Peng, Four quasi-Z-Source inverters, 2008 IEEE Power Electronics Specialists Conference, Rhodes (2008), pp. 2743–2749Google Scholar
  39. 39.
    S. Jiang, F.Z. Peng, Transmission-line theory based distributed Z-source networks for power conversion, in Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1138–1145, 6–11 Mar 2011Google Scholar
  40. 40.
    F. Gao, P.C. Loh, F. Blaabjerg, C.J. Gajanayake, Operational analysis and comparative evaluation of embedded Z-Source inverters, in Proceedings of the IEEE Power Electronics Specialists Conference, PESC, pp. 2757–2763, 15–19 June 2008Google Scholar
  41. 41.
    M. Zhu, K. Yu, F.L. Luo, Switched inductor Z-source inverter. IEEE Trans. Power Electron. 25(8), 2150–2158 (2010)CrossRefGoogle Scholar
  42. 42.
    A.-V. Ho, T.-W. Chun, H.-G. Kim, Extended boost active-switched-capacitor/switched-inductor quasi-z-source inverters. IEEE Trans. Power Electron. 30(10), 5681–5690 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Zhu, K. Yu, F.L. Luo, Topology analysis of a switched-inductor Z-source inverter, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, pp. 364–369, 15–17 June 2010Google Scholar
  44. 44.
    M. Ismeil, M. Orabi, R. Kennel, O. Ellabban, H. Abu-Rub, Experimental studies on a three phase improved switched Z-source inverter, in Proceedings of the Applied Power Electronics Conference and Exposition, APEC, pp. 1248–1254, 16–20 Mar 2014Google Scholar
  45. 45.
    M.-K. Nguyen, Y.-C. Lim, G.-B. Cho, Switched-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 26(11), 3183–3191 (2011)CrossRefGoogle Scholar
  46. 46.
    K. Deng, J. Zheng, J. Mei, Novel switched inductor quasi-Z-source inverter. J. Power Electron. 14(1), 11–21 (2014)CrossRefGoogle Scholar
  47. 47.
    F. Ahmed, H. Cha, S. Kim, H. Kim, Switched-coupled-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 31(2), 1241–1254 (2016)CrossRefGoogle Scholar
  48. 48.
    A. Ho, T. Chun, H.T. Kim, Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters. IEEE Trans. Power Electron. 30(10), 568–5690 (2015)CrossRefGoogle Scholar
  49. 49.
    M.-K. Nguyen, Y.-C. Lim, J.-H. Choi, Two switched-inductor quasi-Z-source inverters. IET Power Electron. 5(7), 1017–1025 (2012)CrossRefGoogle Scholar
  50. 50.
    K. Deng, F. Mei, J. Mei, J. Zheng, G. Fu, An extended switched-inductor quasi-Z-source inverter. J. Electr. Eng. Technol. 9(2), 541–549 (2014)CrossRefGoogle Scholar
  51. 51.
    M. Zhu, D. Li, P.C. Loh, F. Blaabjerg, Tapped-inductor Z-Source inverters with enhanced voltage boost inversion abilities, in Proceedings of the 2nd IEEE International Conference on Sustainable Energy Technologies, ICSET, pp. 1–6, 6–9 Dec 2010Google Scholar
  52. 52.
    Y. Zhou, W. Huang, J. Zhao, P. Zhao, Tapped inductor quasi-Z-source inverter, in Proceedings of the 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1625–1630, 5–9 Feb 2012Google Scholar
  53. 53.
    C.J. Gajanayake, F.-L. Luo, H.B. Gooi, P.L. So, L.K. Siow, Extended-boost Z-source inverters. IEEE Trans. Power Electron. 25(10), 2642–2652 (2010)CrossRefGoogle Scholar
  54. 54.
    D. Vinnikov, I. Roasto, T. Jalakas, R. Strzelecki, M. Adamowicz, Analytical comparison between capacitor assisted and diode assisted cascaded quasi-Z-source inverters. Electr. Rev. 88(1a), 212–217 (2012)Google Scholar
  55. 55.
    D. Vinnikov, I. Roasto, T. Jalakas, S. Ott, Extended boost quasi-Z-source inverters: possibilities and challenges. Electron. Elect. Eng. 112(6), 51–56 (2011)Google Scholar
  56. 56.
    Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P.C. Loh, G.E. Town, Impedance-source networks for electric power conversion Part I: a topological review. IEEE Trans. Power Electron. 30(2), 699–716 (2015)CrossRefGoogle Scholar
  57. 57.
    M. Adamowicz, N. Strzelecka, T-source inverter. Electr. Rev. 85(10), 233–238 (2009)Google Scholar
  58. 58.
    W. Qian, F.-Z. Peng, H. Cha, Trans-Zsource inverters. IEEE Trans. Power Electron. 26(12), 3453–3463 (2011)CrossRefGoogle Scholar
  59. 59.
    M.-K. Nguyen, Y.-C. Lim, S.-J. Park, Improved trans-Z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electron. 28(10), 4500–4510 (2013)CrossRefGoogle Scholar
  60. 60.
    M.-K. Nguyen, Y.-C. Lim, Y.-G. Kim, TZ-source inverters. IEEE Trans. Ind. Electron. 60(12), 5686–5695 (2013)CrossRefGoogle Scholar
  61. 61.
    M. Adamowicz, LCCT-z-source inverters, in Proceedings of the EEEIC (2011), pp. 1–16Google Scholar
  62. 62.
    P.C. Loh, D. Li, F. Blaabjerg, Г-Z-source inverters. IEEE Trans. Power Electron. 28(11), 4880–4884 (2013)CrossRefGoogle Scholar
  63. 63.
    Y.P. Siwakoti, P.C. Loh, F. Blaabjerg, G.E. Town, Y-source impedance network. IEEE Trans. Power Electron. 29(7), 3250–3254 (2014)CrossRefGoogle Scholar
  64. 64.
    R.R. Ahrabi, M.R. Banaei, Improved Y-source DC–AC converter with continuous input current. IET Power Electron. 9(4), 801–808 (2016)CrossRefGoogle Scholar
  65. 65.
    P.C. Loh, F. Blaabjerg, C.P. Wong, Comparative evaluation of pulse width modulation strategies for Z-source neutral-point-clamped inverter. IEEE Trans. Power Electron. 22(3), 1005–1013 (2007)CrossRefGoogle Scholar
  66. 66.
    P.C. Loh, S.W. Lim, F. Gao, F. Blaabjerg, Three-level Z-source inverters using a single LC impedance network. IEEE Trans. Power Electron. 22(2), 706–711 (2007)CrossRefGoogle Scholar
  67. 67.
    O. Husev, C. Roncero-Clemente, E. Romero-Cadaval, D. Vinnikov, S. Stepenko, Single phase three-level neutral-point-clamped quasi-Z-source inverter. IET Power Electron. 8(1), 1–10 (2015)CrossRefGoogle Scholar
  68. 68.
    W. Mo, P.C. Loh, F. Blaabjerg, P. Wang, Trans-Z-source and C-Z-source neutral-pointclamped inverters. IET Power Electron. 8(3), 371–377 (2015)CrossRefGoogle Scholar
  69. 69.
    F. Gao, P.C. Loh, F. Blaabjerg, R. Teodorescu, D.M. Vilathgamuwa, Five-level Z-source diode-clamped inverter. IET Power Electron. 3(4), 500–510 (2010)CrossRefGoogle Scholar
  70. 70.
    B.K. Chaithanya, A. Kirubakaran, A novel four level cascaded Z-source inverter, in Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–5, 16–19 Dec 2014Google Scholar
  71. 71.
    Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single phase photovoltaic power system. IEEE Trans. Ind. Inform. 10(1), 399–407 (2014)CrossRefGoogle Scholar
  72. 72.
    S.M. Dehghan, M. Mohamadian, A. Yazdian, Hybrid electric vehicle based on bidirectional Z-source nine-switch inverter. IEEE Trans. Veh. Technol. 59(6), 2641–2653 (2010)CrossRefGoogle Scholar
  73. 73.
    S.M. Dehghan, M. Mohamadian, A. Yazdian, F. Ashrafzadeh, A dual-input-dual-output Z-source inverter. IEEE Trans. Power Electron. 25(2), 360–368 (2010)CrossRefGoogle Scholar
  74. 74.
    S. Jiang, D. Cao, F.Z. Peng, High frequency transformer isolated Z-source inverters, in Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) 2011, pp. 442–449Google Scholar
  75. 75.
    L. Pan, L-Z-source inverter. IEEE Trans. Power Electron. 29(12), 6534–6543 (2014)CrossRefGoogle Scholar
  76. 76.
    H. Liu et al., Extended quasi-Y-source inverter with suppressed inrush and leakage effects. IET Power Electron. 12(4), 719–728 (2019)CrossRefGoogle Scholar
  77. 77.
    H. Liu et al., High Step-Up Y-Source inverter with reduced DC-Link voltage spikes. IEEE Trans. Power Electron. 34(6), 5487–5499 (2019)CrossRefGoogle Scholar
  78. 78.
    H. Liu, Y. Li, Z. Zhou, W. Wang, D. Xu, A Family of Low-Spike High-Efficiency Y-Source Inverters. IEEE Trans. Industr. Electron. 66(12), 9288–9300 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Northeast Electric Power UniversityJilinChina
  2. 2.Aalborg UniversityAalborgDenmark
  3. 3.Delta Electronic Enterprise Management (Shanghai) co., LtdShanghaiChina
  4. 4.China Southern Power Grid Co., LtdShenzhen Power Supply BureauShenzhenChina
  5. 5.State Grid Zhejiang Electric Power Company Hangzhou Power Supply CompanyHangzhouChina
  6. 6.Harbin Institute of TechnologyHarbinChina

Personalised recommendations