Advertisement

An Image-Based Android Application for Colorimetric Sensing of Biomolecules

  • Sibasish DuttaEmail author
Chapter
  • 20 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1124)

Abstract

In the present work, ubiquitous application of smartphone software application for colorimetric quantification of biomolecular samples and its potential usage in biomedical imaging and analysis have been reported. Android being the most popular and versatile operating system (OS) has been used to develop the software application. The developed app can take the images of the sample through the smartphone camera and thereby analyze and display the concentration of the given biomolecule with good accuracy.

Keywords

Smartphone Android Biomolecules Colorimetry Imaging 

References

  1. 1.
    A. Ozcan, Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 14, 3187–3194 (2014)CrossRefGoogle Scholar
  2. 2.
    N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, A.T. Campbell, A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)CrossRefGoogle Scholar
  3. 3.
    Mary B. Stuart, Andrew J.S. McGonigle, Jon R. Willmott, Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors 19, 3071 (2019)CrossRefGoogle Scholar
  4. 4.
    S.C. Lo, E.H. Lin, K.L. Lee, T.T. Liang, J.C. Liu, P.K. Wei, W.S. Tsai, A: concave blazed-grating-based smartphone spectrometer for multichannel sensing. IEEE Sens. 19, 11134–11141 (2019)CrossRefGoogle Scholar
  5. 5.
    S. Dutta, A. Choudhury, P. Nath, Evanescent wave coupled spectroscopic sensing using smartphone. IEEE Photon. Technol. Lett. 26, 568–570 (2014)CrossRefGoogle Scholar
  6. 6.
    M.V. Bills, B.T. Nguyen, J.Y. Yoon, Simplified white blood cell differential: an inexpensive, smartphone-and paper-based blood cell count. IEEE Sens. 19, 7822–7828 (2019)CrossRefGoogle Scholar
  7. 7.
    C. Vietz, M.L. Schütte, Q. Wei, L. Richter, B. Lalkens, A. Ozcan, P. Tinnefeld, G.P. Acuna, Benchmarking smartphone fluorescence-based microscopy with dna origami nanobeads: reducing the gap toward single-molecule sensitivity. ACS omega 4, 637–642 (2019)CrossRefGoogle Scholar
  8. 8.
    S. Dutta, Point of care sensing and biosensing using ambient light sensor of smartphone: critical review. TRAC-Trend Anal Chem. 110, 393–400 (2019)CrossRefGoogle Scholar
  9. 9.
    J.I. Hong, B.Y. Chang, Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 14, 1725–1732 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Wang, M.R. Gartia, J. Jiang, T.W. Chang, J. Qian, Y. Liu, X. Liu, G.L. Liu, Audio jack based miniaturized mobile phone electrochemical sensing platform. Sens. Actuat B Chem. 207, 677–685 (2015)CrossRefGoogle Scholar
  11. 11.
    P.B. Lillehoj, M.C. Huang, N. Truong, C.M. Ho, Rapid electrochemical detection on a mobile phone. Lab Chip 13, 2950–2955 (2013)CrossRefGoogle Scholar
  12. 12.
    D. Zhang, J. Jiang, J. Chen, Q. Zhang, Y. Lu, Y. Yao, S. Li, G.L. Liu, Q. Liu, Smartphone-based portable biosensing system using impedance measurement with printed electrodes for 2, 4, 6-trinitrotoluene (TNT) detection. Biosens. Bioelectron. 70, 81–88 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Zhang, Q. Liu, Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75, 273–284 (2016)CrossRefGoogle Scholar
  14. 14.
    N. Smyth, Android studio 2 development essentials (Payload Media, USA, 2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PhysicsPandit Deendayal Upadhyaya Adarsha Mahavidyalaya (PDUAM)KarimganjIndia

Personalised recommendations