Advertisement

STEM: Secure Token Exchange Mechanisms

  • Maneesh DarisiEmail author
  • Janhavi Savla
  • Mahesh Shirole
  • Sunil Bhirud
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1132)

Abstract

With the flooding of a large variety of isolated blockchain solutions into the technological world, one major challenge is to enable efficient interoperable interchain and intrachain exchanges. The dearth of inter-operating among these eclectic tokens is hindering the profits that can be earned by potential investors. The myriads of tokens that are flooding into the blockchain ecosystem need to interoperate amongst each other. This paper proposes a mechanism to provide better atomic intrachain token swaps. Our blockchain solution can assist the exchange of these eclectic heterogeneous tokens securely, using digital signatures and hashed time lock contracts, which reduces the problem of interoperability. This paper presents a solution which is token standard agnostic and provides effective intrinsic smart contracts facilitating token exchange and thus reducing the counterparty risk.

Keywords

Blockchain Interoperability Atomic swaps Token exchange 

References

  1. 1.
    Luu, L.: Peacerelay: connecting the many ethereum blockchains (2017)Google Scholar
  2. 2.
    Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework (2017)Google Scholar
  3. 3.
    Kwon, J., Buchman, E.: A network of distributed ledgers (2018)Google Scholar
  4. 4.
    Wrapped Bitcoin (WBTC) an ERC20 token backed 1:1 with BitcoinGoogle Scholar
  5. 5.
    Satoshi, N.: Bitcoin: a peer-to-peer electronic cash system. Bitcoin (2008)Google Scholar
  6. 6.
    Buterin, V.: Ethereum white paper: a next generation smart contract & decentralized application platform (2013)Google Scholar
  7. 7.
    Ding, D.: InterChain: a framework to support blockchain interoperability (2018)Google Scholar
  8. 8.
    Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Buterin, V.: Proof of stake: how i learned to love weak subjectivity (2014)Google Scholar
  10. 10.
    Back, A., et al.: Enabling blockchain innovations with pegged sidechains (2014). http://cs.umd.edu/projects/coinscope/coinscope.pdf
  11. 11.
    Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.: Strong federations: an interoperable blockchain solution to centralized third party risks (2016)Google Scholar
  12. 12.
    Kwon, J.: TenderMint: consensus without mining (2014)Google Scholar
  13. 13.
    Larimer, D.: Delegated proof-of-stake (DPoS). Bitshare whitepaper (2014)Google Scholar
  14. 14.
    Warren, W., Bandeali, A.: 0x: an open protocol for decentralized exchange on the Ethereum blockchain. Technical report (2017)Google Scholar
  15. 15.
    Wang, D., Zhou, J., Wang, A., Finestone, M.: Loopring: a decentralized token exchange protocol. Technical report (2018)Google Scholar
  16. 16.
    Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.: XClaim: trustless, interoperable, cryptocurrency-backed assets, March 2019Google Scholar
  17. 17.
    M. Spoke and Nuco Engineering Team. Aion: The thirdgeneration blockchain networkGoogle Scholar
  18. 18.
    Buterin, V.: Notes on scalable blockchain protocols (2015)Google Scholar
  19. 19.
    Andreas, A., Wood, G.: Mastering Ethereum : Building Smart Contracts and DApps. Orielly, Newton (2018)Google Scholar
  20. 20.
  21. 21.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Maneesh Darisi
    • 1
    Email author
  • Janhavi Savla
    • 1
  • Mahesh Shirole
    • 1
  • Sunil Bhirud
    • 1
  1. 1.CE & IT DepartmentVeermata Jijabai Technological InstituteMumbaiIndia

Personalised recommendations