Microbe-Assisted Phytoremediation in Reinstating Heavy Metal-Contaminated Sites: Concepts, Mechanisms, Challenges, and Future Perspectives

  • Vishal Kumar Deb
  • Ahmad Rabbani
  • Shashi Upadhyay
  • Priyam Bharti
  • Hitesh Sharma
  • Devendra Singh Rawat
  • Gaurav SaxenaEmail author
Part of the Microorganisms for Sustainability book series (MICRO, volume 22)


Pollution has become a serious matter of environmental and political concerns in the world. Our natural environment has been contaminated by various organic and inorganic contaminants, which are being used in many industrial processes and released along with industrial effluents. Among them, heavy metals are highly toxic pollutants, which cause serious environmental pollution and severe health hazards in living beings, and there is a public outcry to ensure the safest and healthiest environment for living beings. Phytoremediation, a type of bioremediation, has been emerged as an eco-sustainable technology that uses plants and their associated microbes to clean up heavy metal-contaminated soils, water, and wastewaters as compared to various physicochemical remediation technologies currently being applied for environmental restoration. However, in current scenario, phytoremediation assisted by plant-associated microorganisms, i.e., microbe-assisted phytoremediation (use of microbes, i.e., plant growth-promoting rhizobacteria, endophytes, and arbuscular mycorrhizal fungi, in assisted phytoremediation), is highly preferred for the remediation of heavy metal-contaminated sites as they have potential to alleviate the heavy metal toxicity in plants through their own metal resistance system and facilitate and improve the growth of host plants under heavy metal stress. In this line, this chapter aims to provide an overview on microbe-assisted phytoremediation, illustrate various mechanisms elicited for plant growth promotion and heavy metal phytoremediation (accumulation/detoxification), and discuss drawbacks and future challenges.


Heavy metals Environmental pollution Toxicity Microbe-assisted phytoremediation Contaminated sites 



Authors are highly thankful to the director of the Baba Farid Institute of Technology (BFIT), Dehradun (UK), India, for providing the infrastructure and facility for the research work.


  1. Adediran GA, Ngwenya BT, Frederick J, Mosselmans W, Heal KV, Harvie BA (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499Google Scholar
  2. Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37(2):139–144CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahemad M, Khan MS (2013) Pesticides as antagonists of rhizobia and the legume- Rhizobium symbiosis: a paradigmatic and mechanistic outlook. Biochem Mol Biol Int 1(4):63–75CrossRefGoogle Scholar
  5. Alexander M (1991) Introduction to soil microbiology. Krieger Publishing Company, MalabarGoogle Scholar
  6. Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes—a view from the rhizosphere. Plant Soil 337:33–50CrossRefGoogle Scholar
  7. Ali H, Khan E (2018) What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicol Environ Chem 100(1):6–19Google Scholar
  8. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefPubMedPubMedCentralGoogle Scholar
  9. Antoniadis V, Levizou E, Shaheen SM, Sik OY, Sebastian A, Baum C, Prasad MNV, Wenzel WW, Rinklebe J (2017) Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth-Sci Rev 171:621–645CrossRefGoogle Scholar
  10. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arwidsson Z, Johansson E, von Kronhelm T, Allard B, van Hees P (2010) Remediation of metal contaminated soil by organic metabolites from fungi—production of organic acids. Water Air Soil Pollut 205:215–226CrossRefGoogle Scholar
  12. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250:477–483CrossRefPubMedPubMedCentralGoogle Scholar
  13. Babu GA, Shea PJ, Sudhakar D, Jung I-B, Byung-Taek O (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166Google Scholar
  14. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473CrossRefPubMedPubMedCentralGoogle Scholar
  15. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53(2):306–316CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Boca Raton, pp 1–22.
  17. Budzikiewicz H (2010) Microbial siderophores. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products. Springer, Vienna, pp 1–75Google Scholar
  18. Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64(10):3663–3668CrossRefPubMedPubMedCentralGoogle Scholar
  19. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46(3):237–245CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cabral L, Soares CFRS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664CrossRefPubMedPubMedCentralGoogle Scholar
  21. Carrillo-Castaneda G, Munoz JJ, Peralta-Videa JR, Gomez E, Gardea- Torresdey JL (2003) Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutr 26(9):1801–1814CrossRefGoogle Scholar
  22. Chanclud E, Morel J-B (2016) Plant hormones: a fungal point of view. Mol Plant Pathol 17(8):1289–1297CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 1–30.
  24. Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment (15 pp). Environ Sci Pollut Res Int 12(1):34–48CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50(6):807–811Google Scholar
  26. Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60(5):665–671CrossRefGoogle Scholar
  27. Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46(3):383–389Google Scholar
  28. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  29. Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15(2):299–326Google Scholar
  30. Coninx L, Martinova V, Rineau F (2017) Chapter Four—Mycorrhiza-assisted phytoremediation. Adv Bot Res 83:127–188CrossRefGoogle Scholar
  31. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406(1–2):154–160CrossRefPubMedPubMedCentralGoogle Scholar
  32. Davies FT, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158(6):777–786Google Scholar
  33. Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicid a PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dimkpa CO, Svatos A, Dąbrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74(1):19–25CrossRefGoogle Scholar
  35. Dixit R, Wasiullah MD, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212Google Scholar
  36. Egamberdieva D, Abd-Allah EF, Teixeira da Silva JA (2016) Microbially assisted phytoremediation of heavy metal–contaminated soils. In: Ahmad P (ed) Plant metal interaction. Elsevier, Amsterdam, pp 483–498CrossRefGoogle Scholar
  37. Elsgaard L, Petersen SO, Debosz K (2001) Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem 20(8):1656–1663CrossRefPubMedPubMedCentralGoogle Scholar
  38. Enyedy EA, Pocsi I, Farkas E (2004) Complexation of desferricoprogen with trivalent Fe, Al, Ga, In and divalent Fe, Ni, Cu, Zn metal ions: effects of the linking chain structure on the metal binding ability of hydroxamate based siderophores. J Inorg Biochem 98(11):1957–1966CrossRefGoogle Scholar
  39. Essen SA, Bylund D, Holmstrom SJM, Moberg M, Lundstrom US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. Biometals 19(3):269–282CrossRefPubMedPubMedCentralGoogle Scholar
  40. Farkas E, Batka D, Kremper G, Pocsi I (2008) Structure-based differences between the metal ion selectivity of two siderophores desferrioxamine B (DFB) and desferricoprogen (DFC): why DFC is much better Pb(II) sequestering agent than DFB? J Inorg Biochem 102(8):1654–1659CrossRefPubMedPubMedCentralGoogle Scholar
  41. Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88(2):689–712CrossRefGoogle Scholar
  42. Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37(5):851–866CrossRefGoogle Scholar
  43. Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature 356:140–142CrossRefGoogle Scholar
  44. Gadd GM (2004) Microorganisms in toxic metal-polluted soils. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer-Verlag, Berlin, pp 325–358Google Scholar
  45. Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, pp 237–256Google Scholar
  46. Gamalero E, Glick BR (2012) Plant growth-promoting bacteria and metal phytoremediation. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies. Taylor and Francis, Boca Raton, pp 359–374Google Scholar
  47. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils. Soil Biol Biochem 30(10–11):1389–1414CrossRefGoogle Scholar
  48. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci U S A 96(11):5973–5977CrossRefPubMedPubMedCentralGoogle Scholar
  49. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393CrossRefPubMedPubMedCentralGoogle Scholar
  50. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7CrossRefPubMedPubMedCentralGoogle Scholar
  51. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374CrossRefPubMedPubMedCentralGoogle Scholar
  52. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications [online]. Hindawi Publishing Corporation, ScientificaGoogle Scholar
  53. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gomez-Sagasti MT, Marino D (2015) PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation? Front Plant Sci 6:81PubMedPubMedCentralGoogle Scholar
  55. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130(3):317–323CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363–4370Google Scholar
  57. Han F, Shan X, Zhang S, Wen B, Owens G (2006) Enhanced cadmium accumulation in maize roots-the impact of organic acids. Plant Soil 289(1–2):355–368CrossRefGoogle Scholar
  58. Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2013) Phytoremediation of heavy and transition metals aided by Legume-Rhizobia symbiosis. Int J Phytoremediation 16(2):179–202CrossRefGoogle Scholar
  59. Harvey PJ, Campanella BF, Castro PML, Harms H, Lichtfouse E, Schäffner AR, Smrcek S, Werck-Reichhart D (2002) Phytoremediation of polyaromatic hydrocarbons, anilines and phenols. Environ Sci Pollut Res 9(1):29–47CrossRefGoogle Scholar
  60. He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, Zhu Y (2010) Effect of Zn-tolerant bacterial strains on growth and Zn accumulation in Orychophragmus violaceus. Appl Soil Ecol 44(1):1–5Google Scholar
  61. He L, Yang H, Yu Z, Tang J, Xu L, Chen X (2014) Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels. J Environ Sci 26:2034–2040CrossRefGoogle Scholar
  62. Hrynkiewicz K, Baum C (2012) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Strategies for Sustainability. Springer, Dordrecht, pp 35–64CrossRefGoogle Scholar
  63. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293CrossRefPubMedPubMedCentralGoogle Scholar
  64. Iqbal J, Ahemad M (2015) Recent advances in bacteria-assisted phytoremediation of heavy metals from contaminated soil. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste. CRC Press, Boca Raton, pp 401–423CrossRefGoogle Scholar
  65. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Krishnamurthy N (2014) Beeregowda, toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72Google Scholar
  66. Jia YJ, Ito H, Matsui H, Honma M (2000) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci Biotechnol Biochem 64(2):299–305CrossRefPubMedPubMedCentralGoogle Scholar
  67. Jiang C-y, Sheng X-f, Qian M, Wang Q-y (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164CrossRefPubMedPubMedCentralGoogle Scholar
  68. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T et al (2014) Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Int J Phytoremediation 16:321–333CrossRefPubMedPubMedCentralGoogle Scholar
  69. Joner E, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234Google Scholar
  70. Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205(1):25–44CrossRefGoogle Scholar
  71. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19CrossRefGoogle Scholar
  72. Khan A, Sharif M, Ali A, Shah SNM, Mian IA, Wahid F, Jan B, Adnan M, Nawaz S, Ali N (2014) Potential of AM fungi in phytoremediation of heavy metals and effect on yield of wheat crop. Am J Plant Sci 5:1578–1586CrossRefGoogle Scholar
  73. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108(4):1471–1484CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lee JH (2013) An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnol Bioprocess Eng 18(3):431–439Google Scholar
  75. Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant Sedum alfredii. Plant Soil 326(1–2):453–467CrossRefGoogle Scholar
  76. Li HY, Wie DQ, Shen M, Zhou ZP (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18CrossRefGoogle Scholar
  77. Li X, Li D, Yana Z, Ao Y (2018) Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv 8:30902–30911CrossRefGoogle Scholar
  78. Liang X, Chi-Quan HE, Gang NI, Tang G-E, Chen X-P, Lei Y-R (2014) Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial Strains. Pedosphere 24(3):322–329CrossRefGoogle Scholar
  79. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal-resistant endophytic bacteria on heavy metal uptake by their host plant. Int J Phytoremediation 3(2):173–187CrossRefGoogle Scholar
  80. Long X, Chen X, Chen Y, Wong Jonathan W-C, Wei Z, Wu Q (2011) Isolation and characterization endophytic bacteria from hyperaccumulator Sedum alfredii Hance and their potential to promote phytoextraction of zinc polluted soil. World J Microbiol Biotechnol 27(5):1197–1207Google Scholar
  81. Luo S, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138CrossRefPubMedPubMedCentralGoogle Scholar
  82. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837CrossRefGoogle Scholar
  84. Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93(7):1386–1392CrossRefPubMedPubMedCentralGoogle Scholar
  85. Ma Y, Oliviera RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69CrossRefGoogle Scholar
  86. Ma Y, Rajkumar M, Zhang C, Freitas H (2016a) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44CrossRefPubMedPubMedCentralGoogle Scholar
  87. Ma Y, Oliveira RS, Freitas H, Zhang C (2016b) Biochemical and molecular mechanisms of plant microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918PubMedPubMedCentralGoogle Scholar
  88. Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228CrossRefPubMedPubMedCentralGoogle Scholar
  89. Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, Wang Q, Li R, Zhang Z (2016) Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol Environ Saf 126:111–121CrossRefPubMedPubMedCentralGoogle Scholar
  90. Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654CrossRefGoogle Scholar
  91. Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35(1):133–141CrossRefGoogle Scholar
  92. Maszenan AM, Liu Y, Ng WJ (2011) Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules. Biotechnol Adv 29(1):111–123CrossRefPubMedPubMedCentralGoogle Scholar
  93. Mathew DC, Ho Y-N, Gicana RG, Mathew GM, Chien M-C, Huang C-C, Chauvat F (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and Its targeted synergistic activity for phytoprotection against mercury. PLoS One 10(3):e0121178CrossRefPubMedPubMedCentralGoogle Scholar
  94. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572CrossRefPubMedPubMedCentralGoogle Scholar
  95. Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775CrossRefGoogle Scholar
  96. Mendes G, Freitas ALM, Pereira OL, da Silva IR, Vassilev NB, Costa MD (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64(1):239–249CrossRefGoogle Scholar
  97. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol R 71(3):413–451CrossRefGoogle Scholar
  98. Mudhoo A, Sharma SK, Lin ZQ, Dhankher OP (2010) Phytoremediation of arsenic-contaminated environment an overview. In: Sharma A, Mudhoo SK (eds) Green chemistry for environmental sustainability, vol 127. Taylor and Francis Group, Boca RatanGoogle Scholar
  99. Mukherjee G, Saha C, Naskar N, Mukherjee A, Mukherjee A, Lahiri S, Majumder AL, Seal A (2018) An endophytic bacterial consortium modulates multiple strategies to improve arsenic phytoremediation efficacy in Solanum nigrum. Sci Rep 8(1):1–16Google Scholar
  100. Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8:207–222Google Scholar
  101. Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al-Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359Google Scholar
  102. Nagajyoti PC, Lee KD, Sreekanth TVM (2010a) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  103. Nagajyoti PC, Sreekanth TVM, Lee KD (2010b) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216CrossRefGoogle Scholar
  104. Nagata S, Yamaji K, Nomura N, Ishimoto H (2015) Root endophytes enhance stress-tolerance of L. growing in a mining pond of eastern Japan. Plant Species Biol 30(2):116–125CrossRefGoogle Scholar
  105. Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182(2):291–296CrossRefPubMedPubMedCentralGoogle Scholar
  106. Ouzounidou G, Moustakas M, Symeonidis L, Karataglis S (2006) Response of wheat seedlings to Ni stress: effects of supplemental calcium. Arch Environ Contam Toxicol 50(3):346–352CrossRefPubMedPubMedCentralGoogle Scholar
  107. Ozyigit II, Dogan I (2015) Plant–microbe interactions in phytoremediation.
  108. Panfili F, Schneider A, Vives A, Perrot F, Hubert P, Pellerin S (2009) Cadmium uptake by durum wheat in presence of citrate. Plant Soil 316(1):299–309CrossRefGoogle Scholar
  109. Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J 2013:272409CrossRefGoogle Scholar
  110. Parida BK, Chhibba IM, Nayyar VK (2003) Influence of nickel contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic-Amsterdam 98(2):113–119CrossRefGoogle Scholar
  111. Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9(6):263–266CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pluhacek T, Lemr K, Ghosh D, Milde D, Novak J, Havlicek V (2016) Characterization of microbial siderophores by mass spectrometry. Mass Spectrom Rev 35(1):35–47CrossRefPubMedPubMedCentralGoogle Scholar
  113. Pocsi I (2011) Toxic metal/metalloid tolerance in fungi—a biotechnology-oriented approach. In: Banfalvi G (ed) Cellular effects of heavy metals. Springer, Berlin, pp 31–58CrossRefGoogle Scholar
  114. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77(2):153–160CrossRefPubMedPubMedCentralGoogle Scholar
  115. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rawlings DE (1997) Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin, Heidelberg, Germany, pp 229–245CrossRefGoogle Scholar
  118. Rawlings DE, Silver S (1995) Mining with microbes. Biotech 13:773–738CrossRefGoogle Scholar
  119. Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53(4):303–317CrossRefPubMedPubMedCentralGoogle Scholar
  120. Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization 1447 of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798CrossRefPubMedPubMedCentralGoogle Scholar
  121. Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721Google Scholar
  122. Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Boca Raton, pp 23–56Google Scholar
  123. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13(11):2844–2854CrossRefPubMedPubMedCentralGoogle Scholar
  124. Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65(1):319–321CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sheng X-F, Xia J-J, Jiang C-Y, He L-Y, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170CrossRefPubMedPubMedCentralGoogle Scholar
  126. Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68(8):3859–3866CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shi JY, Lin HR, Yuan XF, Chen XC, Shen CF, Chen YX (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16:1409–1417CrossRefPubMedPubMedCentralGoogle Scholar
  128. Shin M-N, Shim J, You Y, Myung H, Bang K-S, Cho M, Kamala-Kannan S, Byung-Taek O (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199-200:314–320Google Scholar
  129. Sreelal G, Jayanthi R (2017) Review on phytoremediation technology for removal of soil contaminant. Indian J Sci Res 14:127–130Google Scholar
  130. Srivastava S, Singh N (2014) Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting Acinetobacter sp. Ecol Eng 70:146–153Google Scholar
  131. Srivastava S, Verma PC, Chaudhry V, Namrata S, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047Google Scholar
  132. Sun L-N, Zhang Y-F, He L-Y, Chen Z-J, Wang Q-Y, Qian M, Sheng X-F (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101(2):501–509Google Scholar
  133. Tiwari S, Singh SN, Garg SK (2012) Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ Technol 33(21):2405–2413Google Scholar
  134. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40CrossRefGoogle Scholar
  135. van der Hiejden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310CrossRefGoogle Scholar
  136. Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794CrossRefGoogle Scholar
  137. Visioli G, D’Egidio S, Vamerali T, Mattarozzi M, Sanangelantoni AM (2014) Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere 117:538–544CrossRefPubMedPubMedCentralGoogle Scholar
  138. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305(1):42–48CrossRefPubMedPubMedCentralGoogle Scholar
  139. Vivas A, Biro B, Nemeth T, Barea J, Azcon R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38(9):2694–2704Google Scholar
  140. Vodnik D, Grˇcman H, Mǎcek I, van Elteren JT, Kovǎceviˇc M (2008) The contribution of glomalin related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136Google Scholar
  141. Wan Y, Luo S, Chen J, Xiao X, Liang C, Zeng G, Liu C, He Y (2012) Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89(6):743–750CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wang W, Qiu Z, Tan H, Cao L (2014) Siderophore production by actinobacteria. Biometals 27(4):623–631CrossRefPubMedPubMedCentralGoogle Scholar
  143. Wenzel WW (2008) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321(1–2):385–408Google Scholar
  144. Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering Plant-Microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134Google Scholar
  145. Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–117Google Scholar
  146. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2013) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104CrossRefPubMedPubMedCentralGoogle Scholar
  147. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zhang Y-f, He L-y, Chen Z-j, Wang Q-y, Qian M, Sheng X-f (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83(1):57–62CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zhang X, Lin L, Zhu Z, Yang X, Wang Y, An Q (2013) Colonization and modulation of host growth and metal uptake by endophytic bacteria of Sedum alfredii. Int J Phytoremediation 15(1):51–64CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zhu L-J, Guan D-X, Luo J, Rathinasabapathi B, Ma LQ (2014) Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida. Chemosphere 113:9–16CrossRefPubMedPubMedCentralGoogle Scholar
  151. Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325CrossRefPubMedPubMedCentralGoogle Scholar
  152. Złoch M, Kowalkowski T, Tyburski J, Hrynkiewicz K (2017) Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. Int J Phytoremediation 19(12):1150–1164CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vishal Kumar Deb
    • 1
  • Ahmad Rabbani
    • 1
  • Shashi Upadhyay
    • 1
  • Priyam Bharti
    • 1
  • Hitesh Sharma
    • 1
  • Devendra Singh Rawat
    • 2
  • Gaurav Saxena
    • 1
    Email author
  1. 1.Laboratory of Microbiology, Department of MicrobiologySchool of Life and Allied Sciences (SLAS), Baba Farid Institute of Technology (BFIT)DehradunIndia
  2. 2.Laboratory of Biotechnology, Department of BiotechnologySchool of Life and Allied Sciences (SLAS), Baba Farid Institute of Technology (BFIT)DehradunIndia

Personalised recommendations