Advertisement

Microbial Metabolism of Organophosphates: Key for Developing Smart Bioremediation Process of Next Generation

  • Santanu Pailan
  • Kriti Sengupta
  • Pradipta SahaEmail author
Chapter
  • 37 Downloads
Part of the Microorganisms for Sustainability book series (MICRO, volume 22)

Abstract

Currently organophosphate compounds constitute one of the largest families of chemical compounds that are used for pest control, mainly for better crop yield worldwide. Due to their toxicity, persistence, and adverse effects, some organophosphates (like parathion and methyl parathion) were classified and registered as extremely hazardous by the World Health Organization (WHO) and US EPA (US Environmental Protection agency) and have been banned in many countries. Some of the hydrolysis intermediates (such as 4-nitrophenol and trichloropyridinol) of these organophosphates are more toxic and environmentally mobile (due to greater water solubility) and therefore more dangerous. However, existing reports suggest their illegal, extensive use and application without proper technical know-how (especially by illiterate farmers in underdeveloped/developing countries). Their indiscriminate and extensive application and use are responsible for possible contamination of several ecosystems and groundwater. Continuous and excessive use of organophosphates has been reported to be responsible for various ever-ending global problems such as contamination of air, water, and terrestrial ecosystems, decline in diversity of productive soil microflora, disruption of biogeochemical cycles, and death of nontarget macroscopic life forms. Organophosphates have been documented as neurotoxic and are potent inhibitors of acetylcholinesterase. They are responsible for serious adverse effect on the nervous, excretion, endocrine, reproductive, cardiovascular, and respiratory systems of target as well as nontarget organisms including humans. Moreover, these compounds are one of the major causes of accidental and suicidal deaths in rural population of the world. The situation therefore is of huge public interest, and hence, suitable cost-effective bioremediation technique must be developed for the restoration of organophosphate-contaminated environmental niches. Bioremediation of pollutants by biological system has emerged as the most effective method for clean up the contaminated sites. In order to implement bioremediation approach, proper understanding of microbial metabolism of these organophosphates compounds is of extreme importance. Microbial metabolism of OP compounds can be carried out catabolically (with organophosphates serving either as a sole source for C, N, or P) or co-metabolically (in the presence of other compounds, mainly carbohydrates). The metabolic conversion of organophosphates to CO2 and H2O (i.e., complete mineralization) is carried out through three main processes such as degradation, conjugation, and rearrangements that involves reactions like oxidation, hydrolysis, and reduction, all mediated through the enzyme-mediated pathways. The main enzymes that are involved in hydrolysis are phosphotriesterases (PTE) and phosphatase. The three major types of PTE are reported so far, such as organophosphate hydrolase (OPH), methyl parathion hydrolase (MPH), and organophosphorus acid anhydrolase (OPAA) encoded by opd, mpd, and opaA genes, which are either located on plasmid or on chromosomal DNA. Since most of the organophosphates are less soluble to make it physiologically available for microbes, solubilization is carried out either through the secretion of organic acid or by biosurfactants by the microbial cells. This is followed by adsorption and or uptake. Most of these adsorption and uptake mechanisms remain largely unknown. However, being lipophilic and small in size, these organophosphates can be transported to the periplasmic space where the metabolic transformation starts. The metabolic transformation involves either an initial oxidation or reduction followed by hydrolysis to release the toxic functional group and phosphate group. This hydrolysis step is most critical as it reduces the toxicity of organophosphates. The metabolic transformation of the toxic functional group is most well-studied and reported in literature. This is followed by a series of reactions that involves interconversion ultimately leading to ring cleavage reaction that opens up the molecule. Further reactions then convert these intermediates into a product that can act as suitable metabolite to be entered into the TCA cycle. The end products released from the TCA cycle are CO2 and H2O. Most of initial reactions are mediated in the periplasmic space of the bacterial cell. The interconversion of much less toxic metabolites occurs in the cytoplasm. Although many facets of organophosphates biodegradation have been excavated, still there remain many lacunas. Understanding microbial diversity, ecological aspects, and adaptation strategies might cater better prospects to hope for smart technologies.

Keywords

Organophosphates; 4-Nitrophenol Parathion Methyl parathion 

Notes

Acknowledgments

Authors are grateful to SERB, New Delhi, for providing fund to carry out work on organophosphate degradation and to the University of Burdwan, Burdwan, West Bengal.

References

  1. Abe K, Yoshida S, Suzuki Y, Mori J et al (2014) Haloalkylphosphorus hydrolases purified from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1. Appl Environ Microbiol 80:5866–5873CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  3. Abraham J, Silambarasan S (2013) Biodegradation of chlorpyrifos and its hydrolyzing metabolite 3,5,6-trichloro-2-pyridinol by Sphingobacterium sp. JAS3. Process Biochem 48:1559–1564CrossRefGoogle Scholar
  4. Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemist 45:13677–13686CrossRefGoogle Scholar
  5. Afriat-Jurnou L, Jackson CJ, Tawfik DS (2012) Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51:6047–6055CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ajaz M, Rasool SA, Sherwani SK, Ali TA (2012) High profile chlorpyrifos degrading Pseudomonas putida MAS-1 from indigenous soil: gas chromatographic analysis and molecular characterization. Int J Basic Med Sci Pharma 2:58–61Google Scholar
  7. Aktar MW, Paramasivam M et al (2009) Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environ Monit Assess 157:97–104CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alexander M (1999) Biodegradation and bioremediation. Academic Press, LondonGoogle Scholar
  9. Ali M, Naqvi TA, Kanwal M et al (2012) Detection of the OP degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. Ann Microbiol 62:233–239CrossRefGoogle Scholar
  10. Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6:987–998Google Scholar
  11. Alzahrani AM (2009) Insects cytochrome P450 enzymes: evolution, functions and methods of analysis. Global J Mol Sci 4:167–179Google Scholar
  12. Amitai G, Adani R et al (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438:195–200CrossRefGoogle Scholar
  13. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405CrossRefGoogle Scholar
  14. Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18CrossRefGoogle Scholar
  15. Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731CrossRefGoogle Scholar
  16. Arora PK, Sasikala C et al (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93:2265–2277CrossRefPubMedPubMedCentralGoogle Scholar
  17. Attaway H, Nelson JO et al (1987) Bacterial detoxification of diisopropyl fluorophosphate. Appl Environ Microbiol 53:1685–1689CrossRefPubMedPubMedCentralGoogle Scholar
  18. Awad NS, Sabit HH et al (2011) Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils. Afr J Microbiol Res 5:2855–2862CrossRefGoogle Scholar
  19. Baker MD, Wolanin PM, Stock JB (2005) Signal transduction in bacterial chemotaxis. Bio Essays 28:9–22Google Scholar
  20. Balamurugan K, Ramakrishnan M et al (2010) Biodegradation of methyl parathion and monochrotophos by Pseudomonas aeruginosa and Trichoderma viridae. Asian J Sci Technol 6:123–126Google Scholar
  21. Barman DN, Haque MA et al (2014) Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol Environ Saf 108:135–141CrossRefPubMedPubMedCentralGoogle Scholar
  22. Barton JW, Kuritz T et al (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65:330–335CrossRefGoogle Scholar
  23. Begum SS, Arundhati A (2016) A study of bioremediation of methyl parathion in vitro using potential Pseudomonas sp. isolated from agricultural Soil, Visakhapatnam, India. Int J Curr Microbiol App Sci 5:464–474CrossRefGoogle Scholar
  24. Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63CrossRefGoogle Scholar
  25. Benning MM, Kuo JM et al (1995) Three dimensional structure of the binuclear metal center of phosphotriesterase. Biochemist 34:7973–7978CrossRefGoogle Scholar
  26. Berg G, Grube M et al (2014) The plant microbiome and its importance for plant and human health. Front Microbiol 5:491.  https://doi.org/10.3389/fmicb.2014.00491CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bhagobaty RK, Malik A (2008) Utilization of chlorpyrifos as a sole source of carbon by bacteria isolated from wastewater irrigated agricultural soils in an industrial area of western Uttar Pradesh, India. Res J Microbiol 3:293–307CrossRefGoogle Scholar
  28. Bhushan B, Samanta SK et al (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133CrossRefPubMedPubMedCentralGoogle Scholar
  29. Bhushan B, Halasz A et al (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821CrossRefGoogle Scholar
  30. Block R, Stroo H, Swett GH (1993) Bioremediation- why doesn’t it work sometimes? Chem Eng Prog 89:44–50Google Scholar
  31. Briceño G, Fuentes MS et al (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7CrossRefGoogle Scholar
  32. Brown D, Jaffe PR (2006) Effects of nonionic surfactants on the cell surface hydrophobicity and Apparent Hamaker constant of a Sphingomonas sp. Environ Sci Technol 40:195–201CrossRefPubMedPubMedCentralGoogle Scholar
  33. Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorus insecticides. Appl Biochem Biotechnol 39:715–726CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chao Y, Zhu Y et al (2008) Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a co-culture with OP-mineralizing activity. Appl Environ Microbiol 74:7733–7739CrossRefGoogle Scholar
  35. Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chen CM, Ye QZ et al (1990) Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 265:4461–4471PubMedPubMedCentralGoogle Scholar
  37. Chen S, Yang L et al (2011) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrohomonas sp. strain ZS-S-01 and its use in boremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767Google Scholar
  38. Chen S, Liu C et al (2012) Biodegradation of Chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7:e47205CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chen L-Z, Li Y-L, Yu Y-L (2014) Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 15:322–332CrossRefGoogle Scholar
  40. Chen J, Luo X-J et al (2015) Marked enhancement of Acinetobacter sp. organophosphorus hydrolase activity by a single residue substitution Ile211Ala. Bioresour Bioprocess 2:39CrossRefGoogle Scholar
  41. Chen Q, Chen K et al (2016) A novel amidohydrolase (DmhA) from Sphingomonas sp. that can hydrolyze the organophosphorus pesticide dimethoate to dimethoate carboxylic acid and methylamine. Biotechnol Lett 38:703–710CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cheng TC, DeFrank JJ (2000) Hydrolysis of organophosphorus compounds by bacterial prolidases. In: Zwanenburg B et al (eds) Enzymes in action green solutions for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 243–261Google Scholar
  43. Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140CrossRefPubMedPubMedCentralGoogle Scholar
  44. Cheng T-C, Haevey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cheng T, Liu L et al (1997) Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J Ind Microbiol Biotechnol 18:49–55CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cheng T-C, DeFrank JJ, Rastogi VK (1999) Alteromonas prolidase for organophosphorus G-agent decontamination. Chem Biol Interact 120:455–462CrossRefGoogle Scholar
  47. Cho CM-H, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685CrossRefPubMedPubMedCentralGoogle Scholar
  48. Chu X-Y, Wu N-F et al (2006) Expression of organophosphorus hydrolase OPHC2 in Pichia pastoris: Purification and characterization. Protein Expr Purif 49:9–14CrossRefPubMedPubMedCentralGoogle Scholar
  49. Comeau Y, Greer CW, Samson R (1993) Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation. Appl Microbiol Biotechnol 38:681–687CrossRefGoogle Scholar
  50. Concepcio’n C-F, Danta’n-Gonza’lez E et al (2012) Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation 23:387–397CrossRefGoogle Scholar
  51. Cycon’ M, Wojcik M et al (2011) Biodgradation kinetics of the benzimidazole fungicide thiophanate methyl by bacteria isolated from loamy sand soil. Biodegradation 22:573–583CrossRefGoogle Scholar
  52. Daughton CG, Hsieh DP (1977) Parathion utilization by bacterial symbionts in a chemostat. Appl Environ Microbiol 34:175–184CrossRefPubMedPubMedCentralGoogle Scholar
  53. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589CrossRefPubMedPubMedCentralGoogle Scholar
  54. Deng S, Chen Y et al (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24CrossRefPubMedPubMedCentralGoogle Scholar
  55. Dong Y-J, Bartlam M et al (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663CrossRefPubMedPubMedCentralGoogle Scholar
  56. Dotson SB, Smith CE et al (1996) Identification, characterization and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. J Biol Chem 271:25754–25761CrossRefPubMedPubMedCentralGoogle Scholar
  57. Dubey KK, Fulekar MH (2012) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28:1715–1725CrossRefPubMedPubMedCentralGoogle Scholar
  58. Dumas DP, Caldwell SR et al (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665PubMedPubMedCentralGoogle Scholar
  59. Ekkhunnatham A, Jongsareejit B et al (2012) Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading OP insecticides. World J Microbiol Biotechnol 28:1739–1746CrossRefPubMedPubMedCentralGoogle Scholar
  60. Fang H, Xiang YQ et al (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi. Int Biodeterior Biodegrad 61:294–303CrossRefGoogle Scholar
  61. Fang L-C, Chen Y-F et al (2016) Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1. J Biotechnol 227:1–2CrossRefPubMedPubMedCentralGoogle Scholar
  62. Fang-Yao L, Ming-zhang H et al (2007) Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci 19:1257–1260CrossRefGoogle Scholar
  63. Farhan M, Khan AU et al (2012) Biodegradation of Chlorpyrifos using indigenous Pseudomonas sp. isolated from industrial drain. Pak J Nutr 11:1183–1189CrossRefGoogle Scholar
  64. Farivar TN, Peymani A et al (2017) Biodegradation of paraoxon as an OP pesticide with Pseudomonas plecoglossicida transfected by opd gene. Biotech Health Sci.  https://doi.org/10.17795/bhs-45055
  65. Fodale R, Pasquale CD et al (2010) Isolation of organophosphorus-degrading bacteria from agricultural mediterranean soils. Fresenius Environ Bull 19:2396–2403Google Scholar
  66. Fulekar MH, Geetha M (2008) Bioremediation of Chlorpyrifos by Pseudomonas aeruginosa using scale up technique. J Appl Biosci 12:657–660Google Scholar
  67. Gallo MA, Lawryk NJ (1991) Organic phosphorus pesticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, San Diego, pp 917–1123Google Scholar
  68. Gao Y, Chen S et al (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One 6:e38137CrossRefGoogle Scholar
  69. Ghanem I, Orfi M, Shamma M (2007) Biodegradation of Chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in damascus. Folia Microbiol 52:423–427CrossRefGoogle Scholar
  70. Ghosh PG, Sawant NA et al (2010) Microbial biodegradation of OP pesticides. Int J Biotech Biochem 6:871–876Google Scholar
  71. Goda SK, Elsayed IE et al (2010) Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylesterase in soil bacteria. Biodegradation 21:903–913CrossRefPubMedPubMedCentralGoogle Scholar
  72. Greenhalgh R, Dhawan KL, Weinberger P (1980) Hydrolysis of Fenitrothion in model and natural aquatic systems. J Agrlc Food Chem 28:102–105CrossRefGoogle Scholar
  73. Guha A, Kumari B, Roy MK (1997) Possible involvement of plasmid in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol 42:574–576CrossRefGoogle Scholar
  74. Guo Z, Yuan Y et al (2009) Function analysis of OP pesticides hydrolase from Pseudomonas stutzeri HS-D36. doi:  https://doi.org/10.1109/ICBBE.2009.5162870.
  75. Gupta PK (2004) Pesticide exposure-Indian scene. Toxicology 198:83–90CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hao J, Liu J, Sun M (2014) Identification of a marine Bacillus strain C5 and parathion-methyl degradation characteristics of the extracellular esterase B1. Bio Med Research Int 2014:863094.  https://doi.org/10.1155/2014/863094CrossRefGoogle Scholar
  77. Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of OP pesticide by soil fungi. Advanced Bio Tech 12:04–08Google Scholar
  78. Harper LL, McDaniel CS et al (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contains identical opd genes. Appl Environ Microbiol 54:2586–2589CrossRefPubMedPubMedCentralGoogle Scholar
  79. Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134 (pJ4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972CrossRefPubMedPubMedCentralGoogle Scholar
  80. Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66:1737–1740CrossRefPubMedPubMedCentralGoogle Scholar
  81. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88CrossRefPubMedPubMedCentralGoogle Scholar
  82. Horne I, Sutherland TD et al (2002a) Identification of an opd (OP degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376CrossRefPubMedPubMedCentralGoogle Scholar
  83. Horne I, Sutherland TD et al (2002b) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiologica 148:2687–2695Google Scholar
  84. Hua F, Yunlong Y et al (2009) Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci 21:380–386CrossRefGoogle Scholar
  85. Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4:82–85Google Scholar
  86. Ifediegwu MC, Agu KC et al (2015) Isolation, growth and identification of chlorpyrifos degrading bacteria from agricultural soil in Anambra State, Nigeria. Univ J Microbiol Res 3:46–52Google Scholar
  87. Islam SMA, Math RK, Cho KM (2010) Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from Kimchi is able to degrade organophosphorus pesticides. J Agric Food Chem 58:5380–5386CrossRefPubMedPubMedCentralGoogle Scholar
  88. Iyer R, Iken B, Tamez T (2011) Isolation, molecular and biochemical identification of Paraoxon-metabolizing Pseudomonas Species. J Bioremed Biodegra 2:132CrossRefGoogle Scholar
  89. Iyer R, Stepanov VG, Iken B (2013) Isolation and molecular characterization of a novel Pseudomonas putida strain capable of degrading OP and aromatic compounds. Adv Biol Chem 3:564–578CrossRefGoogle Scholar
  90. Jabeen H, Iqbal S, Anwar S (2015) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a novel rhizobial strain Mesorhizobium sp. HN3. Water Environ J 29:151–160CrossRefGoogle Scholar
  91. Jao S-C, Huang L-F et al (2004) Hydrolysis of OP triesters by Escherichia coli aminopeptidase P. J Mol Catalys B: Enz 27:7–12CrossRefGoogle Scholar
  92. Jayasri Y, Naidu MD, Malllkarjuna M (2015) Biodegradation of the chlorpyrifos pesticide by bacteria isolated from groundnut agricultural soils in Kadapa Basin. The Ecoscan 9:143–146Google Scholar
  93. Jeffries TC, Rayu S et al (2018) Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front Microbiol 9:147.  https://doi.org/10.3389/fmicb.2018.00147CrossRefPubMedPubMedCentralGoogle Scholar
  94. Jiang J, Zhang R et al (2007) Parameters controlling the gene-targeting frequency at the Sphingomonas species rrn site and expression of the methyl parathion hydrolase gene. J Appl Microbiol 102:1578–1585CrossRefPubMedPubMedCentralGoogle Scholar
  95. John EM, Sreekumar J, Jisha MS (2016) Optimization of chlorpyrifos degradation by assembled bacterial consortium using response surface methodology. Soil Sediment Contam: An Int J 25:668–682.  https://doi.org/10.1080/15320383.2016.1190684CrossRefGoogle Scholar
  96. Jones AS, Hastings FL (1981) Soil microbe studies. In: Hastings FL, Coster JE (eds) Field and laboratory evaluations of insecticides for southern pine beetle control, vol 21. Southern Forest Experiment Station, Forest Service, SE, USDA, pp 13–14Google Scholar
  97. Kadiyala V, Spain JC (1998) A two component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484CrossRefPubMedPubMedCentralGoogle Scholar
  98. Kanekar PP, Bhadbhade BJ, Deshpande NM (2004) Biodegradation of OP pesticides. Proc Indian Natri Sci Acad B70:57–70Google Scholar
  99. Kannan K, Tanabe S, Giesy JP, Tatsukawa R (1997) Organochlorine pesticides and polychlorinated biphenyls in food stuffs from Asian and oceanic countries. Rev Environ Contam Toxicol 152:1–55PubMedPubMedCentralGoogle Scholar
  100. Karolin KP, Meenakumari KS, Subha P (2015) Isolation and characterization of novel chlorpyrifos degrading fungus Isaria Farinosa. J Chem Chem Eng 9:403–407Google Scholar
  101. KaviKarunya S, Reetha D (2012) Biological degradation of chlorpyrifos and monocrotophos by bacterial isolates. Int J Pharm Biol Arch 3:685–691Google Scholar
  102. Kawahara K, Tanaka A et al (2010) Reclassification of a parathione degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. J Gen Appl Microbiol 56:249–255CrossRefPubMedPubMedCentralGoogle Scholar
  103. Keprasertsupa C, Suchart Upatham ES et al (2001) Degradation of methyl parathion in an aqueous medium by soil bacteria. Sci Asia 27:261–270CrossRefGoogle Scholar
  104. Khaled A, Miia T et al (2012) Metabolism of pesticides by human cytochrome P450 enzymes. In: Vitro-a survey, insecticides-advances in integrated pest management. InTech. Available at: http://cdn.intechopen.com/pdfs/25674/InTechMetabolism_of_pesticides_b_human_cytochrome_p450_enzymes_in_vitro_a_survey.pdf
  105. Kim J-R, Ahn Y-J (2009) Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100. Biodegradation 20:487–497CrossRefPubMedPubMedCentralGoogle Scholar
  106. Kim T, Ahn J-H et al (2007) Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J Microbiol Biotechnol 17:1890–1893PubMedPubMedCentralGoogle Scholar
  107. Kim CH, Choi JS et al (2013) Biodegradation of chlorpyrifos (CP) by a newly isolated Naxibacter sp. strain CY6 and its ability to degrade CP in soil. Korean J Microbiol 49:83–89CrossRefGoogle Scholar
  108. Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-Nitrophenol degradation gene cluster from a Gram-Positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902CrossRefPubMedPubMedCentralGoogle Scholar
  109. Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225CrossRefGoogle Scholar
  110. Kumar S (2011a) Isolation, characterization and growth response study of chlorpyrifos degrading bacteria from cultivated soil. Int J Adv Engineer Technol 2:199–203Google Scholar
  111. Kumar S (2011b) Bioremediation of chlorpyrifos by bacteria isolated from the cultivated soils. Int J Pharm Bio Sci 2:359–366Google Scholar
  112. Kumar J, D’Souza SF (2010) An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on micro plate as a reusable biocomponent. Biosens Bioelectron 26:1292–1296CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kumar J, Jha SK, D’Souza SF (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens Bioelectron 21:2100–2105CrossRefPubMedPubMedCentralGoogle Scholar
  114. Kumar SV, Fareedullah M et al (2010) Current review on Organophosphorous poisoning. Archives Appl Sci Res 2:199–215Google Scholar
  115. Kuo JM, Raushel FM (1994) Identification of the histidine ligands to the binuclear metal center of phosphotriesterase by site-directed mutagenesis. Biochemistry 33:4265–4272CrossRefGoogle Scholar
  116. Lakshmi A (1993) Pesticides in India: risk assessment to aquatic ecosystems. Sci Total Environ 134:243–253CrossRefGoogle Scholar
  117. Lakshmi CV, Kumar M, Khanna S (2009) Biodegradation of chlorpyrifos in soil by enriched cultures. Curr Microbol 58:35–38CrossRefGoogle Scholar
  118. Latifi AM, Khodi S et al (2012) Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 11:3140–3146Google Scholar
  119. Li X, Schuler MA, Berenbaum MR (2007a) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253CrossRefGoogle Scholar
  120. Li X, He J, Li S (2007b) Isolation of chlorpyrifos degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149CrossRefGoogle Scholar
  121. Li Y, Li W, Zhang C, Yan Y (2008a) Isolation, characterization of methyl-parathion degrading strain L1 and cloning of the mpd gene. Biotechnol Bull:2008-06Google Scholar
  122. Li XH, Jiang JD et al (2008b) Diversity of chlorpyrifos degrading bacteria isolated from chlorpyrifos-contaminated samples. Int Biodeterior Biodegrad 62:331–335CrossRefGoogle Scholar
  123. Liu X, Parales RE (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl Environ Microbiol 75:5481–5488CrossRefPubMedPubMedCentralGoogle Scholar
  124. Liu Y-H, Chung Y-C, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67:3746–3749CrossRefPubMedPubMedCentralGoogle Scholar
  125. Liu X, You M et al (2003) Isolation of chlorpyrifos-degrading Aspergillus sp. Y and measurement of degradation efficiency. Chinese J Appl Environ Biol 9:78–80Google Scholar
  126. Liu Y-H, Liu Y et al (2004) Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP303. Enz Microbial Technol 34:297–303CrossRefGoogle Scholar
  127. Liu H, Zhang J-J et al (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114CrossRefGoogle Scholar
  128. Liu Z, Chen X et al (2012) Bacterial degradation of Chlorpyrifos by Bacillus cereus. Adv Mater Res 356–360:676–680Google Scholar
  129. Liu Z, Xie J et al (2014) Isolation of an organophosphorus-degrading strain Pseudomonas sp. strain YF-5 and cloning of mpd gene from this strain. J Pure Appl Microbiol 8:587–591Google Scholar
  130. Longkumar T, Parthasarathy S et al (2014) OxyR dependent expression of a novel glutathione S-tranferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of OP insecticides. Microbiologica 160:102–112Google Scholar
  131. Lu P, Li Q et al (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342CrossRefGoogle Scholar
  132. Madhuri RJ, Rangaswamy V (2009) Biodegradation of selected insecticides by Bacillus and Pseudomonas sps in ground nut fields. Toxicol Int 16:127–132Google Scholar
  133. Marinho G, Rodrigues K et al (2011) Glucose effect on degradation kinetics of methyl parathion by filamentous fungi species Aspergillus niger AN400. Eng Sanit Ambient 16:225–230CrossRefGoogle Scholar
  134. Mastumura F, Boush GM (1968) Degradation of insecticides by a soil fungus, Trichoderma viridae. J Econ Entomol 61:610–612CrossRefGoogle Scholar
  135. Maya K, Singh RS et al (2011) Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochem 46:2130–2136CrossRefGoogle Scholar
  136. Maya K, Upadhyay SN et al (2012) Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresour Technol 126:216–223CrossRefGoogle Scholar
  137. Mazur A (1946) An enzyme in animal tissue capable of hydrolyzing the phosphorous-fluorine bond of alkyl fluorophosphates. J Biol Chem 164:271–289PubMedGoogle Scholar
  138. McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311CrossRefPubMedPubMedCentralGoogle Scholar
  139. Min-Kyeong C, Kim K-D et al (2009) Genetic and phenotypic diversity of parathion-degrading bacteria isolated from rice paddy soils. J Microbiol Biotechnol 19:1679–1687CrossRefGoogle Scholar
  140. Mishra A (2015) Microbial degradation of methyl parathion by a soil bacterial isolate and consortium. Int J Res Studies Biosci:15–19Google Scholar
  141. Misra D, Bhuyan S et al (1992) Accelerated degradation of methyl parathion, parathion and fenitrothion by suspensions from methyl parathion and p-nitrophenol-treated soils. Soil Biol Biochem 24:1035–1042CrossRefGoogle Scholar
  142. Monteiro SA, Sassaki GL et al (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13CrossRefGoogle Scholar
  143. Morra MJ (1996) Bioremediation in soil: Influence of soil properties on organic contaminants and bacteria. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and application. Cambridge University Press, Cambridge, pp 35–60CrossRefGoogle Scholar
  144. Mulbry WW (1992) The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-l: cloning, sequencing and expression in Escherichia coli. Gene 121:149–153CrossRefGoogle Scholar
  145. Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: Relationship between the gene and protein. J Bacteriol 171:6740–6746CrossRefPubMedPubMedCentralGoogle Scholar
  146. Mulbry WW, Karns JS et al (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930CrossRefPubMedPubMedCentralGoogle Scholar
  147. Mulbry WW, Zhu H et al (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloning and construction of gene-specific primers. FEMS Microbiol Lett 206:75–79CrossRefGoogle Scholar
  148. Munnecke DM, Hsieh DPH (1974) Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol 28:212–217CrossRefPubMedPubMedCentralGoogle Scholar
  149. Munnecke DM, Hsieh DPM (1976) Pathways of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69CrossRefPubMedPubMedCentralGoogle Scholar
  150. Nelson LM (1982) Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria. Soil Biol Biochem 14:219–222CrossRefGoogle Scholar
  151. Neti N, Zakkula V (2013) Analysis of chlorpyrifos degradation by Kocuria sp. using GC and FTIR. Curr Biotica 6:466–472Google Scholar
  152. Ningfeng W, Minijie D et al (2004) Isolation, purification and characterization of a new organophosphorous hydrolase OPH2. Chin Sci Bull 49:268–272Google Scholar
  153. Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723CrossRefGoogle Scholar
  154. Omar SA (1998) Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation 9:327–336CrossRefGoogle Scholar
  155. Omburo GA, Kuo JM et al (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283PubMedGoogle Scholar
  156. Ortiz-Hernandez ML, Sanchez-Salinas E (2010) Biodegradation of the OP pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev Int Contam Ambient 26:27–38Google Scholar
  157. Pailan S, Saha P (2015) Chemotaxis and degradation of OP compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation. PeerJ 3:e1378.  https://doi.org/10.7717/peerj.1378CrossRefPubMedPubMedCentralGoogle Scholar
  158. Pailan S, Gupta D et al (2015) Degradation of OP insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. Int Biodeterior Biodegrad 103:191–195CrossRefGoogle Scholar
  159. Pailan S, Sengupta K et al (2016) Evidence of biodegradation of Chlorpyrifos by a newly isolated heavy metal tolerant bacterium Acinetobacter sp. strain MemCl4. Environ Earth Sci 75:1019.  https://doi.org/10.1007/s12665-016-5834-8CrossRefGoogle Scholar
  160. Pakala SB, Gorla P et al (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452–1462CrossRefGoogle Scholar
  161. Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795CrossRefPubMedPubMedCentralGoogle Scholar
  162. Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55:197–205CrossRefGoogle Scholar
  163. Pandey G, Chauhan A et al (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409CrossRefPubMedPubMedCentralGoogle Scholar
  164. Park N-J, Kamble ST (2001) Decapitation impact effect of topically applied chlorpyrifos on acetylcholinesterase and general esterases in susceptible and resistant German Cockroaches (Dictyoptera: Blattellidae). J Econ Entomol 94:499–505CrossRefGoogle Scholar
  165. Parthasarathy S, Parapatla H, Nandavaram A et al (2016) OP Hydrolase is a lipoprotein and interacts with pi-specific transport system to facilitate growth of Brevundimonas diminuta Using op insecticide as source of phosphate. J Biol Chem 291:7774–7785CrossRefPubMedPubMedCentralGoogle Scholar
  166. Parthasarathy S, Azam S, Lakshman Sagar A et al (2017a) Genome-guided insights reveal OP-degrading Brevundimonas diminuta as Sphingopyxis wildii and define its versatile metabolic capabilities and environmental adaptations. Genome Biol Evol 9:77–81PubMedGoogle Scholar
  167. Parthasarathy S, Parapatla H, Siddavattam D (2017b) Topological analysis of the lipoprotein OP hydrolase from Sphingopyxis wildii reveals a periplasmic localization. FEMS Microbiol Lett 364:fnx187.  https://doi.org/10.1093/femsle/fnx187CrossRefGoogle Scholar
  168. Penaloza-Vazquez A, Mena GL et al (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61:538–543CrossRefPubMedPubMedCentralGoogle Scholar
  169. Peter JK, Masih H et al (2014) OP pesticide (methyl parathion) degrading bacteria isolated from rhizospheric soil of selected plants and optimization of growth conditions for degradation. Int J Res 1Google Scholar
  170. Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831CrossRefGoogle Scholar
  171. Pino NJ, Dominguez MC, Penuela GA (2011) Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site. J Environ Sci Health 46:173–180CrossRefGoogle Scholar
  172. Puri SN, Murthy KS, Sharma OP (2013) Pest problems in India-current status. Ind J Plant Protec 27:20–31Google Scholar
  173. Qiu X-H, Bai W-Q et al (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994CrossRefPubMedPubMedCentralGoogle Scholar
  174. Ramakrishnan B, Megharaj M et al (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Rev Environ Contam Toxicol 211:63–120PubMedGoogle Scholar
  175. Ramanathan MP, Lalithakumari D (1996) Methyl parathion degradation by Pseudomonas sp. A3 immobilized in sodium alginate beads. World J Microbiol Biotechnol 12:107–108CrossRefGoogle Scholar
  176. Ramanathan MP, Lalithakumari D (1999) Complete Mineralization of Methyl parathion by Pseudomonas sp. A3. Appl Biochem Biotechnol 80:1–12CrossRefGoogle Scholar
  177. Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 4:1000–1004CrossRefGoogle Scholar
  178. Rani MS, Lakshmi KV et al (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:026–031Google Scholar
  179. Rao AV, Sethunathan N (1974) Degradation of parathion by Penicillium waksmani isolated from flooded acid sulphate soil. Arch Microbiol 97:203–208CrossRefGoogle Scholar
  180. Rayu S, Nielsen UN, Nazaries L, Singh BK (2018) Isolation and molecular characterization of novel chlorpyrifos and 3,5,6- trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 8:518.  https://doi.org/10.3389/fmicb.2017.00518CrossRefGoogle Scholar
  181. Rodrigues GN, Alvarenga N et al (2016) Biotransformation of methyl-parathion by marine-derived fungi isolated from ascidian Didemnum ligulum. Biocatalys Agri Biotechnol 7:24–30CrossRefGoogle Scholar
  182. Romeh AA, Hendawi MY (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Technol 16:265–276Google Scholar
  183. Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891CrossRefPubMedPubMedCentralGoogle Scholar
  184. Sabdono A (2007) Biodegradation of chlorpyrifos by a marine bacterium Bacillus firmus strain BY6 associated with branching coral Acropora sp. J Coastal Develop 10:115–123Google Scholar
  185. Sabdono A, Radjasa OK (2008) Phylogenetic diversity of OP pesticides-degrading coral bacteria from mild-West coast of Indonesia. Biotechnology 7:694–701CrossRefGoogle Scholar
  186. Samanta SK, Bhushan B et al (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123CrossRefPubMedPubMedCentralGoogle Scholar
  187. Sasikala C, Jiwal S et al (2012) Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil. World J Microbiol Biotechnol 28:1301–1308CrossRefPubMedPubMedCentralGoogle Scholar
  188. Savitha K, Raman DNS (2012) Isolation, identification, resistance profile and growth kinetics of chlorpyrifos resistant bacteria from agricultural soil of Bangalore. Res Biotechnol 3:08–13Google Scholar
  189. Scott C, Pandey G et al (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79CrossRefPubMedPubMedCentralGoogle Scholar
  190. Serdar CM, Gibson DT et al (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249CrossRefPubMedPubMedCentralGoogle Scholar
  191. Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875CrossRefPubMedPubMedCentralGoogle Scholar
  192. Shan M, Fang H et al (2006) Effect of chlorpyrifos on soil microbial populations and enzyme activities. J Environ Sci 18:4–5Google Scholar
  193. Sharma J, Gupta KC, Goel AK (2013) Isolation and identification of potential methyl parathion degrading bacteria from Gwalior arable soil. Int J Pharm Bio Sci 4:192–202Google Scholar
  194. Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110CrossRefGoogle Scholar
  195. Sheehan D, Meade G et al (2001) Structure, function and evolution of glutathione transferases: implications for classification of non mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16CrossRefPubMedPubMedCentralGoogle Scholar
  196. Shen YJ, Hong YF et al (2007) Isolation, identification and characteristics of a phoxim-degrading bacterium XSP-1. Huan Jing Ke Xue 28:2833–2837PubMedPubMedCentralGoogle Scholar
  197. Shen Y-J, Lu P, Mei H et al (2010a) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792CrossRefPubMedPubMedCentralGoogle Scholar
  198. Shen Y-J, Lu P et al (2010b) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792CrossRefPubMedPubMedCentralGoogle Scholar
  199. Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorous pesticides and p-nitrophenol by genetically engineered Moraxella sp. with surface expressed organophosphorous hydrolase. Biotechnol Bioeng 4:318–324CrossRefGoogle Scholar
  200. Siddaramappa R, Rajaram KP, Sethunathan N (1973) Degradation of Parathion by bacteria isolated from flooded soil. Appl Microbiol 26:846–849CrossRefPubMedPubMedCentralGoogle Scholar
  201. Siddavattam D, Khajamohiddin S et al (2003) Transposon-like organization of the plasmid-borne OP degradation (opd) gene cluster found in Flavobacterium sp. Appl Environ Microbiol 69:2533–2539CrossRefPubMedPubMedCentralGoogle Scholar
  202. Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369CrossRefGoogle Scholar
  203. Singh BK (2009) Organophosphorous-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164CrossRefPubMedPubMedCentralGoogle Scholar
  204. Singh BK, Walker A (2006) Microbial degradation of organophosphorous compounds. FEMS Microbiol Rev 30:428–471CrossRefPubMedPubMedCentralGoogle Scholar
  205. Singh BK, Walker A et al (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206CrossRefPubMedPubMedCentralGoogle Scholar
  206. Singh BK, Walker A et al (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863CrossRefPubMedPubMedCentralGoogle Scholar
  207. Singh DP, Khattar JIS et al (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res 18:1351–1359CrossRefGoogle Scholar
  208. Somara S, Siddavattam D (1995) Plasmid mediated OP pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int 36:627–631PubMedPubMedCentralGoogle Scholar
  209. Spain JC, Gibson DT (1991) Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819CrossRefPubMedPubMedCentralGoogle Scholar
  210. Sreenivasulu C, Aparna Y (2001) Bioremediation of methyl Parathion by free and immobilized cells of Bacillus sp. isolated from soil. Bull Environ Contam Toxicol 67:98–105PubMedPubMedCentralGoogle Scholar
  211. Sukirtha TH, Usharani MV (2013) Production and qualitative analysis of biosurfactant and biodegradation of the OP by Nocardia mediterranei. J Bioremed Biodeg 4:198.  https://doi.org/10.4172/2155-6199.1000198CrossRefGoogle Scholar
  212. Taesung K, Ahn J-H et al (2007) Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J Microbiol Biotechnol 17:1890–1893Google Scholar
  213. Tago K, Sekiya E et al (2006) Diversity of fenitrothion- degrading bacteria in soil from distant geographical areas. Microbes Environ 21:58–64CrossRefGoogle Scholar
  214. Tehara SK, Keasling JD (2003) Gene cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans. Appl Environ Microbiol 69:504–508CrossRefPubMedPubMedCentralGoogle Scholar
  215. Thengodkar RRM, Sivakami S (2010) Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21:637–644CrossRefGoogle Scholar
  216. Theriot CM, Grunden AM (2011) Hydrolysis of OP compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43CrossRefGoogle Scholar
  217. Tian J, Wang P et al (2010) Enhanced thermo stability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS J 277:4901–4908CrossRefGoogle Scholar
  218. Tomlin C (2000) The pesticide manual. BCPC, Surrey, UKGoogle Scholar
  219. Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325CrossRefGoogle Scholar
  220. Van Eerd LL, Hoagland RE et al (2003) Pesticidemetabolism in plants and microorganisms. Weed Sci 51:472–495CrossRefGoogle Scholar
  221. Vanhooke JL, Benning MM et al (1996) Three dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemist 35:6020–6025CrossRefGoogle Scholar
  222. Vijayalakshmi P, Usha MS (2012) Optimization of Chlorpyrifos degradation by Pseudomonas putida. J Chem Pharm Res 4:2532–2539Google Scholar
  223. Walker AW, Keasling JD (2002) Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol Bioeng 78:15–721CrossRefGoogle Scholar
  224. Wang JH, Zhu LS et al (2005) Degrading characters of 3 chlorpyrifos degrading fungus. Chinese J Appl Environ Biol 11:211–214Google Scholar
  225. Wang X, Chu X et al (2006) Degradation characteristics and functions of chlorpyrifos degradation bacterium Bacillus laterosporus DSP. Acta Pedol Sin 43:648–654Google Scholar
  226. Wang B, Li X et al (2008) Cloning and expression of the mpd gene from a newly isolated methylparathion-degrading strain of bacteria. Acta Sci Circumst 28:1969–1975Google Scholar
  227. Wang S, Zhang C, Yan Y (2012) Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12. Biodegradation 23:107–116CrossRefPubMedPubMedCentralGoogle Scholar
  228. Wang D, Xue Q et al (2015) Isolation and characterization of a highly efficient chlorpyrifos degrading strain of Cupriavidus taiwanensis from sludge. J Basic Microbiol 55:229–235CrossRefPubMedPubMedCentralGoogle Scholar
  229. Wen Y, Jiang J-D et al (2007) Effect of mutation of chemotaxis signal transduction gene cheA in Pseudomonas putida DLL-1 on its chemotaxis and methyl parathion biodegradation. Acta Microbiol Sin 47:471–476Google Scholar
  230. Whitman WB, David CC, William W (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRefPubMedPubMedCentralGoogle Scholar
  231. Wu S et al (2015) Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos. J Basic Microbiol 55:389–397CrossRefPubMedPubMedCentralGoogle Scholar
  232. Xie H, Zhu L et al (2010) Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation. J Environ Sci 22:930–1935Google Scholar
  233. Xu G, Li Y et al (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29:1469–1473CrossRefPubMedPubMedCentralGoogle Scholar
  234. Xu GM, Zheng W et al (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. TRP. Int Biodeterior Biodegrad 62:51–56CrossRefGoogle Scholar
  235. Yang L, Zhao YH et al (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73CrossRefGoogle Scholar
  236. Yang C, Liu N et al (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125CrossRefGoogle Scholar
  237. Yang C, Dong M et al (2007) Reductive transformation of parathion and methyl parathion by Bacillus sp. Biotechnol Lett 29:487–493CrossRefGoogle Scholar
  238. Yu YL, Fang H et al (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17:487–494CrossRefGoogle Scholar
  239. Zhang R, Cui Z et al (2005) Diversity of organophosphorus pesticide degrading bacteria in a polluted soil and conservation of their organophosphorous hydrolase genes. Can J Microbiol 51:337–343CrossRefGoogle Scholar
  240. Zhang R, Cui Z et al (2006a) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17:465–472CrossRefGoogle Scholar
  241. Zhang Z, Hong Q et al (2006b) Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17:275–283CrossRefGoogle Scholar
  242. Zhang J, Xin Y et al (2008) Metabolism-independent chemotaxis of Pseudomonas sp. strain WBC-3 toward aromatic compounds. J Environ Sci 20:1238–1242CrossRefGoogle Scholar
  243. Zhang JJ, Liu H et al (2009) Identification and characterization of catabolic para-Nitrophenol 4-Monooxygenase and para- Benzoquinone reductase from Pseudomonas sp. Strain WBC-3. J Bacteriol 191:2703–2710CrossRefPubMedPubMedCentralGoogle Scholar
  244. Zhang Q, Wang BC et al (2012a) Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. J Hazard Mater 221-222:178–184CrossRefGoogle Scholar
  245. Zhang S, Sun W et al (2012b) Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Pseudomonas sp. 1-7. BMC Microbiol 12:27CrossRefPubMedPubMedCentralGoogle Scholar
  246. Zhang R, Xu X, Chen W, Huang Q (2016) Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol 100:1987–1997CrossRefGoogle Scholar
  247. Zhongli C, Shunnpeng L, Guoping F (2001) Isolation of Methyl parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925CrossRefPubMedPubMedCentralGoogle Scholar
  248. Zhu L, Zhou W (2008) Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. Environ Pollut 152:130–137CrossRefGoogle Scholar
  249. Zhu J, Zhao Y, Qiu J (2010) Isolation and application of chlorpyrifos-degrading Bacillus licheniformis-ZHU-1. Afr J Microbiol Res 4:2410–2413Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MicrobiologyBurdwan UniversityGolapbag, BurdwanIndia

Personalised recommendations