Advertisement

Integral Transform Benchmarks of Diffusion, Convection–Diffusion, and Conjugated Problems in Complex Domains

  • Renato M. CottaEmail author
  • Diego C. Knupp
  • João N. N. Quaresma
  • Kleber M. Lisboa
  • Carolina P. Naveira-Cotta
  • José Luiz Z. Zotin
  • Helder K. Miyagawa
Chapter
  • 143 Downloads

Abstract

The Generalized Integral Transform Technique (GITT) is reviewed as a hybrid numerical–analytical approach for linear or nonlinear diffusive and convective–diffusive partial differential formulations, including an important class of conjugated problems in heat transfer and fluid flow analyses. This chapter focus is on the handling of irregular regions and heterogeneous domains, as a tribute to Prof. D. B. Spalding, who stimulated this research direction in a private communication with the first author, back in 1994. First, formal solutions for nonlinear diffusion and convection–diffusion formulations are reviewed, including the alternatives of adopting nonlinear and/or convective eigenvalue problems, either on total or partial transformation schemes. Next, the GITT itself is formalized in the solution of linear and nonlinear eigenvalue problems, including the direct integral transformation of problems defined in irregular domains, based on simpler auxiliary eigenvalue problems written for the same geometry. Then, a single domain reformulation strategy is discussed, which accounts for heterogeneities on either physical properties or geometrical forms, by rewriting the different media transitions as space variable equation coefficients and source terms. The two complementary strategies are then illustrated through representative examples in convection and conjugated conduction–convection problems, confirming the excellent convergence characteristics of the proposed eigenfunction expansions, toward the establishment of sets of benchmark reference results. The present hybrid solutions are also co-verified against results from purely numerical general-purpose CFD codes.

Keywords

Hybrid methods Integral transforms GITT Irregular domains Heterogeneous media Conjugated problems Eigenvalue problems 

Notes

Acknowledgements

The authors are grateful for the financial support offered by the Brazilian Government agencies CNPq (projects no. 401237/2014-1 and no. 207750/2015-7), CAPES-INMETRO, and FAPERJ. RMC is also grateful to the Leverhulme Trust for the Visiting Professorship (VP1-2017-028) and to the kind hospitality of the Department of Mechanical Engineering, University College London (UCL), UK, along 2018.

References

  1. 1.
    Deakin, M. A. B. (1985). Euler´s Invention of the Integral Transforms. Archive for History of Exact Sciences, 33, 307–319.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Euler, L. (1769). Institutiones Calculi Integralis (Vol. 2 (Book 1, Part 2, Section 1)). St. Petersburg Imp. Acad. Sci. Reprinted in https://archive.org/details/institutionescal020326mbp/page/n1.
  3. 3.
    Fourier, J. B. (2007). The analytical theory of heat (Unabridged). Cosimo Inc., New York. Translation of Original: (1822) Théorie Analytique de la Chaleur. Paris: Firmin Didot Père et Fils.Google Scholar
  4. 4.
    Koshlyakov, N. S. (1936). Basic differential equations of mathematical physics (In Russian). ONTI, Moscow, 4th edition.Google Scholar
  5. 5.
    Titchmarsh, E. C. (1946). Eigenfunction expansion associated with second order differential equations, Oxford University Press.Google Scholar
  6. 6.
    Grinberg, G. A. (1948). Selected problems of mathematical theory of electrical and magnetic effects (In Russian). Nauk SSSR: Akad.Google Scholar
  7. 7.
    Koshlyakov, N. S., Smirnov, M. M., & Gliner, E. B. (1951). Differential equations of mathematical physics. North Holland, Amsterdam: Translated by Script Technica, 1964.Google Scholar
  8. 8.
    Eringen, A. C. (1954). The finite Sturm-Liouville transform. The Quarterly Journal of Mathematics, 5(1), 120–129.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Olçer, N. Y. (1964). On the theory of conductive heat transfer in finite regions. International Journal of Heat and Mass Transfer, 7, 307–314.CrossRefGoogle Scholar
  10. 10.
    Mikhailov, M. D. (1967). Nonstationary temperature fields in skin. Moscow: Energiya.Google Scholar
  11. 11.
    Luikov, A. V. (1968). Analytical heat diffusion theory. New York: Academic Press.Google Scholar
  12. 12.
    Ozisik, M. N. (1968). Boundary value problems of heat conduction. New York, Int: Textbooks Co.Google Scholar
  13. 13.
    Sneddon, I. N. (1972). Use of integral transforms. New York: McGraw-Hill.zbMATHGoogle Scholar
  14. 14.
    Mikhailov, M. D. (1972). General solution of the heat equation of finite regions. International Journal of Engineering Science, 10, 577–591.zbMATHCrossRefGoogle Scholar
  15. 15.
    Ozisik, M. N. (1980). Heat conduction. New York: John Wiley.Google Scholar
  16. 16.
    Luikov, A. V. (1980). Heat and mass transfer. Moscow: Mir Publishers.zbMATHGoogle Scholar
  17. 17.
    Mikhailov, M. D., & Özisik, M. N. (1984). Unified analysis and solutions of heat and mass diffusion. John Wiley: New York; also, Dover Publications, 1994.Google Scholar
  18. 18.
    Ozisik, M. N., & Murray, R. L. (1974). On the solution of linear diffusion problems with variable boundary condition parameters. ASME J. Heat Transfer, 96c, 48–51.Google Scholar
  19. 19.
    Mikhailov, M. D. (1975). On the solution of the heat equation with time dependent coefficient. International Journal of Heat and Mass Transfer, 18, 344–345.zbMATHCrossRefGoogle Scholar
  20. 20.
    Cotta, R. M. (1986). Diffusion in media with prescribed moving boundaries: Application to metals oxidation at high temperatures. Proc. of the II Latin American Congress of Heat & Mass Transfer, Vol. 1, pp. 502–513, São Paulo, Brasil, May.Google Scholar
  21. 21.
    Cotta, R. M., & Ozisik, M. N. (1987). Diffusion problems with general time-dependent coefficients. Rev. Bras. Ciências Mecânicas, 9(4), 269–292.Google Scholar
  22. 22.
    Aparecido, J. B., Cotta, R. M., & Ozisik, M. N. (1989). Analytical Solutions to Two-Dimensional Diffusion Type Problems in Irregular Geometries. J. of the Franklin Institute, 326, 421–434.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Cotta, R. M. (1990). Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems. Num. Heat Transfer, Part B, 127, 217–226.CrossRefGoogle Scholar
  24. 24.
    Cotta, R. M., & Carvalho, T. M. B. (1991). Hybrid Analysis of Boundary Layer Equations for Internal Flow Problems. 7th Int. Conf. on Num. Meth. in Laminar & Turbulent Flow, Part 1, pp. 106–115, Stanford CA, July.Google Scholar
  25. 25.
    Perez Guerrero, J. S., & Cotta, R. M. (1992). Integral Transform Method for Navier-Stokes Equations in Stream Function-Only Formulation. Int. J. Num. Meth. in Fluids, 15, 399–409.zbMATHCrossRefGoogle Scholar
  26. 26.
    Cotta, R. M. (1993). Integral Transforms in Computational Heat and Fluid Flow. Boca Raton, FL: CRC Press.zbMATHGoogle Scholar
  27. 27.
    Cotta, R. M. (1994). The Integral Transform Method in Computational Heat and Fluid Flow. Special Keynote Lecture. Proc. of the 10th Int. Heat Transfer Conf., Brighton, UK, SK-3, Vol. 1, pp. 43–60, August.Google Scholar
  28. 28.
    Cotta, R. M. (1994). Benchmark Results in Computational Heat and Fluid Flow: - The Integral Transform Method. Int. J. Heat Mass Transfer, Invited Paper, 37, 381–394.zbMATHCrossRefGoogle Scholar
  29. 29.
    Napolitano, M., & Orlandi, P. (1985). Laminar Flow in a Complex Geometry: A Comparison. Int. Journal for Numerical methods in Fluids, 5, 667–683.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Perez Guerrero, J. S., & Cotta, R. M. (1995). A Review on Benchmark Results for the Navier-Stokes Equations Through Integral Transformation. Revista Perfiles de Ingenieria, (Invited Paper), no.4, pp.C.30–33, Peru, July.Google Scholar
  31. 31.
    Perez Guerrero, J. S., Quaresma, J. N. N., & Cotta, R. M. (2000). Simulation of Laminar Flow inside Ducts of Irregular Geometry using Integral Transforms. Computational Mechanics, 25(4), 413–420.zbMATHCrossRefGoogle Scholar
  32. 32.
    Cotta, R. M., & Mikhailov, M. D. (1997). Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation. Chichester, UK: Wiley.Google Scholar
  33. 33.
    Cotta, R. M. (1998). The Integral Transform Method in Thermal and Fluids Sciences and Engineering. New York: Begell House.zbMATHGoogle Scholar
  34. 34.
    Cotta, R. M., & Mikhailov, M. D. (2006). Hybrid Methods and Symbolic Computations. In W. J. Minkowycz, E. M. Sparrow, & J. Y. Murthy (Eds.), Handbook of Numerical Heat Transfer, 2nd edition, Chapter 16. New York: John Wiley.Google Scholar
  35. 35.
    Cotta, R. M., Knupp, D. C., & Naveira-Cotta, C. P. (2016). Analytical Heat and Fluid Flow in Microchannels and Microsystems. Mechanical Eng. Series.  New York: Springer.zbMATHCrossRefGoogle Scholar
  36. 36.
    Cotta, R. M., Knupp, D. C., & Quaresma, J. N. N. (2018). Analytical Methods in Heat Transfer. In Handbook of Thermal Science and Engineering, F. A. Kulacki et al., Eds., Chapter 1. Springer.Google Scholar
  37. 37.
    Cotta, R. M., Naveira-Cotta, C. P., Knupp, D. C., Zotin, J. L. Z., Pontes, P. C., & Almeida, A. P. (2018). Recent Advances in Computational-Analytical Integral Transforms for Convection-Diffusion Problems. Heat & Mass Transfer, Invited Paper, 54, 2475–2496.CrossRefGoogle Scholar
  38. 38.
    Cotta, R. M., Su, J., Pontedeiro, A. C., & Lisboa, K. M. (2018). Computational-Analytical Integral Transforms and Lumped-Differential Formulations: Benchmarks and Applications in Nuclear Technology. Special Lecture, 9th Int. Symp. on Turbulence, Heat and Mass Transfer, THMT-ICHMT, Rio de Janeiro, July 10th–13th. In Turbulence, Heat and Mass Transfer 9, pp. 129–144, Eds. A. P. Silva Freire et al., Begell House, New York.Google Scholar
  39. 39.
    Cotta, R. M., Lisboa, K. M., Curi, M. F., Balabani, S., Quaresma, J. N. N., Perez-Guerrero, J. S., et al. (2019). A Review of Hybrid Integral Transform Solutions in Fluid Flow Problems with Heat or Mass Transfer and under Navier-Stokes Equations Formulations. Num. Heat Transfer, Part B - Fundamentals, 76, 1–28.CrossRefGoogle Scholar
  40. 40.
    Cotta, R. M., Naveira-Cotta, C. P., & Knupp, D. C. (2016). Nonlinear Eigenvalue Problem in the Integral Transforms Solution of Convection-diffusion with Nonlinear Boundary Conditions. Int. J. Num. Meth. Heat & Fluid Flow, Invited Paper, 25th Anniversary Special Issue, 26, 767–789.Google Scholar
  41. 41.
    Pontes, P. C., Almeida, A. P., Cotta, R. M., & Naveira-Cotta, C. P. (2018). Analysis of Mass Transfer in Hollow-Fiber Membrane Separator via Nonlinear Eigenfunction Expansions. Multiphase Science and Technology, 30(2-3), 165–186.CrossRefGoogle Scholar
  42. 42.
    Cotta, R. M., Knupp, D. C., Naveira-Cotta, C. P., Sphaier, L. A., & Quaresma, J. N. N. (2014). The Unified Integral Transforms (UNIT) Algorithm with Total and Partial Transformation. Comput. Thermal Sciences, 6, 507–524.CrossRefGoogle Scholar
  43. 43.
    Ozisik, M. N., Orlande, H. R. B., Colaço, M. J., & Cotta, R. M. (2017). Finite Difference Methods in Heat Transfer (2nd ed.). Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  44. 44.
    Serfaty, R., & Cotta, R. M. (1992). Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems. Int. J. Num. Meth. Heat & Fluid Flow, 2, 55–62.CrossRefGoogle Scholar
  45. 45.
    Cotta, R. M., Naveira-Cotta, C. P., & Knupp, D. C. (2017). Convective Eigenvalue Problems for Convergence Enhancement of Eigenfunction Expansions in Convection-diffusion Problems. ASME J. Thermal Science and Eng. Appl., 10(2), 021009 (12 pages).Google Scholar
  46. 46.
    Knupp, D. C., Cotta, R. M., Naveira-Cotta, C. P., & Cerqueira, I. G. S. (2018). Conjugated Heat Transfer via Integral Tranforms: Single Domain Formulation, Total and Partial Transformation, and Convective Eigenvalue Problems. Proc. of the 10th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators, Power Sources”, pp. 171–178, Minsk, Belarus, September 10th–13th.Google Scholar
  47. 47.
    Lima, G. G. C., Santos, C. A. C., Haag, A., & Cotta, R. M. (2007). Integral Transform Solution of Internal Flow Problems Based on Navier-Stokes Equations and Primitive Variables Formulation. Int. J. Num. Meth. Eng., 69, 544–561.zbMATHCrossRefGoogle Scholar
  48. 48.
    Lisboa, K. M., & Cotta, R. M. (2018). Hybrid Integral Transforms for Flow Development in Ducts Partially Filled with Porous Media. Proc. Royal Society A - Mathematical, Physical and Eng. Sciences, 474, 1–20.Google Scholar
  49. 49.
    Lisboa, K. M., Su, J., & Cotta, R. M. (2019). Vector Eigenfunction Expansion in the Integral Transform Solution of Transient Natural Convection. Int. J. Num. Meth. Heat & Fluid Flow, 29, 2684–2708.CrossRefGoogle Scholar
  50. 50.
    Sphaier, L. A., & Cotta, R. M. (2000). Integral Transform Analysis of Multidimensional Eigenvalue Problems Within Irregular Domains. Numerical Heat Transfer, Part B-Fundamentals, 38, 157–175.CrossRefGoogle Scholar
  51. 51.
    Sphaier, L. A., & Cotta, R. M. (2002). Analytical and Hybrid Solutions of Diffusion Problems within Arbitrarily Shaped Regions via Integral Transforms. Computational Mechanics, 29(3), 265–276.MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Monteiro, E. R., Quaresma, J. N. N., & Cotta, R. M. (2011). Integral transformation of multidimensional phase change problems: Computational and physical analysis. 21st International Congress of Mechanical Engineering, COBEM-2011, ABCM, pp.1–10, Natal, RN, Brazil, October.Google Scholar
  53. 53.
    Cotta, R. M., & Mikhailov, M. D. (2005). Semi-analytical evaluation of integrals for the generalized integral transform technique. Proc. of the 4th Workshop on Integral Transforms and Benchmark Problems – IV WIT, pp. 1–10, CNEN, Rio de Janeiro, RJ, August.Google Scholar
  54. 54.
    Cotta, R. M., Knupp, D. C., Naveira-Cotta, C. P., Sphaier, L. A., & Quaresma, J. N. N. (2013). Unified Integral Transforms Algorithm for Solving Multidimensional Nonlinear Convection-Diffusion Problems. Num. Heat Transfer, part A - Applications, 63, 1–27.Google Scholar
  55. 55.
    Knupp, D. C., Naveira-Cotta, C. P., & Cotta, R. M. (2012). Theoretical Analysis of Conjugated Heat Transfer with a Single Domain Formulation and Integral Transforms. Int. Comm. Heat & Mass Transfer, 39(3), 355–362.CrossRefGoogle Scholar
  56. 56.
    Knupp, D. C., Naveira-Cotta, C. P., & Cotta, R. M. (2014). Theoretical–experimental Analysis of Conjugated Heat Transfer in Nanocomposite Heat Spreaders with Multiple Microchannels. Int. J. Heat Mass Transfer, 74, 306–318.CrossRefGoogle Scholar
  57. 57.
    Knupp, D. C., Cotta, R. M., Naveira-Cotta, C. P., & Kakaç, S. (2015). Transient Conjugated Heat Transfer in Microchannels: Integral Transforms with Single Domain Formulation. Int. J. Thermal Sciences, 88, 248–257.CrossRefGoogle Scholar
  58. 58.
    Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P. (2015). Fluid Flow and Conjugated Heat Transfer in Arbitrarily Shaped Channels via Single Domain Formulation and Integral Transforms. Int. J. Heat Mass Transfer, 82, 479–489.CrossRefGoogle Scholar
  59. 59.
    Almeida, A. P., Naveira-Cotta, C. P., & Cotta, R. M. (2018). Integral Transforms for Transient Three-dimensional Heat Conduction in Heterogeneous Media with Multiple Geometries and Materials. Paper # IHTC16–24583. Proc. of the 16th International Heat Transfer Conference – IHTC16, Beijing, China, August 10th–15th.Google Scholar
  60. 60.
    Lisboa, K. M., Su, J., & Cotta, R. M. (2018). Single Domain Integral Transforms Analysis of Natural Convection in Cavities Partially Filled with Heat Generating Porous Medium. Num. Heat Transfer, Part A – Applications, 74(3), 1068–1086.Google Scholar
  61. 61.
    Lisboa, K. M., & Cotta, R. M. (2018). On the Mass Transport in Membraneless Flow Batteries of Flow-by Configuration. Int. J. Heat & Mass Transfer, 122, 954–966.CrossRefGoogle Scholar
  62. 62.
    Wang, C. C., & Chen, C. K. (2002). Forced Convection in a Wavy-Wall Channel. Int. Journal of Heat and Mass Transfer, 45, 2587–2595.zbMATHCrossRefGoogle Scholar
  63. 63.
    Silva, R. L., Santos, C. A. C., Quaresma, J. N. N., & Cotta, R. M. (2011). Integral Transforms Solution for Flow Development in Wavy-Wall Ducts. Int. J. Num. Meth. Heat & Fluid Flow, 21(2), 219–243.Google Scholar
  64. 64.
    Castellões, F. V., Quaresma, J. N. N., & Cotta, R. M. (2010). Convective Heat Transfer Enhancement in Low Reynolds Number Flows with Wavy Walls. Int. J. Heat & Mass Transfer, 53, 2022–2034.zbMATHCrossRefGoogle Scholar
  65. 65.
    Zotin, J. L. Z., Knupp, D. C., & Cotta, R. M. (2017). Conjugated Heat Transfer in Complex Channel-Substrate Configurations: Hybrid Solution with Total Integral Transformation and Single Domain Formulation. Proc. of ITherm 2017 - Sixteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Paper #435, Orlando, FL, USA, May 30th–June 2nd.Google Scholar
  66. 66.
    Knupp, D. C., Cotta, R. M., & Naveira-Cotta, C. P. (2020). Conjugated Heat Transfer Analysis via Integral Transforms and Convective Eigenvalue Problems. J. Eng. Physics & Thermophysics, (in press).Google Scholar
  67. 67.
    Wolfram, S. (2017). Mathematica, version 11. Champaign, IL: Wolfram Research Inc.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Renato M. Cotta
    • 1
    • 2
    Email author
  • Diego C. Knupp
    • 3
  • João N. N. Quaresma
    • 4
  • Kleber M. Lisboa
    • 1
  • Carolina P. Naveira-Cotta
    • 1
  • José Luiz Z. Zotin
    • 5
  • Helder K. Miyagawa
    • 4
  1. 1.Mechanical Engineering Department POLI & COPPE, CTFederal University of Rio de Janeiro, UFRJRio de JaneiroBrazil
  2. 2.General Directorate of Nuclear and Technological DevelopmentDGDNTM, Brazilian NavyRio de JaneiroBrazil
  3. 3.Mechanical Engineering Department, Instituto Politécnico, IPRJ/UERJState University of Rio de JaneiroNova FriburgoBrazil
  4. 4.Chemical Engineering Department and Graduate ProgramNatural Resource Engineering in the Amazon, Institute of Technology, University of Pará, UFPABelémBrazil
  5. 5.Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, CEFET/RJItaguaíBrazil

Personalised recommendations