Advertisement

Study of Pool Boiling Through Numerical Approach

  • Vinod Pandey
  • Gautam BiswasEmail author
  • Amaresh Dalal
Chapter
  • 127 Downloads

Abstract

In the past, various numerical approaches have been followed and utilized to analyze the bubble growth and heat transfer during boiling of liquids over a heated substrate. The present chapter focuses to review significant works associated with the simulations of nucleate and film boiling regimes. Most of the numerical approaches differ in the interface capturing techniques or the microlayer modeling in case of nucleate boiling. In the present chapter, the overall development in the research related to boiling studies has been overviewed and the advancement in the studies particularly related to the pool boiling through numerical simulation has been discussed.

Keywords

Film boiling Nucleate boiling Transition boiling Numerical analyses 

References

  1. 1.
    Zuber, Z. (1959). Hydrodynamic aspects of boiling heat transfer. Ph.D. thesis, University of California, Los AngelesGoogle Scholar
  2. 2.
    Nikolayev, V., Chatain, D., Garrabos, Y., & Beysens, D. (2006). Physical Review Letters, 97(18), 184503.CrossRefGoogle Scholar
  3. 3.
    Rohsenow, W. M. (1951) A method of correlating heat transfer data for surface boiling of liquids. Tech. rep., Cambridge, Mass.: MIT Division of Industrial CorporationGoogle Scholar
  4. 4.
    Tien, C. (1962). International Journal of Heat and Mass Transfer, 5(6), 533.CrossRefGoogle Scholar
  5. 5.
    Moore, F. D., & Mesler, R. B. (1961). AIChE Journal, 7(4), 620.CrossRefGoogle Scholar
  6. 6.
    Carey, V. P. (2008). Liquid-Vapor Phase-Change Phenomena (2nd ed.). LLC: Taylor and Francis Group.Google Scholar
  7. 7.
    Hsu, Y. (1962). ASME Journal of Heat Transfer, 84(3), 207.CrossRefGoogle Scholar
  8. 8.
    Kurihara, H., & Myers, J. (1960). AIChE Journal, 6(1), 83.CrossRefGoogle Scholar
  9. 9.
    Zuber, N. (1963). International Journal of Heat and Mass Transfer, 6(1), 53.CrossRefGoogle Scholar
  10. 10.
    Fritz, W. (1935). Physikalische Zeitschrift, 36, 379384.Google Scholar
  11. 11.
    Pandey, V., Biswas, G., & Dalal, A. (2016). Physics of Fluids, 28(5), 052102.CrossRefGoogle Scholar
  12. 12.
    Gerlach, D., Tomar, G., Biswas, G., & Durst, F. (2006). International Journal of Heat and Mass Transfer, 49(3–4), 740.CrossRefGoogle Scholar
  13. 13.
    Son, G., & Dhir, V. K. (1997). International Journal of Heat and Mass Transfer, 1, 525.Google Scholar
  14. 14.
    Welch, S. W. J. (1995). Journal of Computational Physics, 121, 142.CrossRefGoogle Scholar
  15. 15.
    Juric, D., & Tryggvason, G. (1998). International Journal of Multiphase Flow, 24(3), 387.CrossRefGoogle Scholar
  16. 16.
    Welch, S. W. J., & Wilson, J. (2000). Journal of Computational Physics, 160(2), 662.CrossRefGoogle Scholar
  17. 17.
    Hirt, C. W., & Nichols, B. (1981). Journal of Computational Physics, 39(1), 201.CrossRefGoogle Scholar
  18. 18.
    Osher, S., Sethian, J. A. (1988). Journal of Computational Physics 79, 12.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Sussman, M., & Puckett, E. G. (2000). Journal of Computational Physics, 162(2), 301.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Puckett, E. G., Almgren, A. S., Bell, J. B., Marcus, D. L., & Rider, W. J. (1997). Journal of Computational Physics, 130(2), 269.CrossRefGoogle Scholar
  21. 21.
    Strang, G. (1968). SIAM Journal on Numerical Analysis, 5(3), 506.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sussman, M., Smereka, P., & Osher, S. (1994). Journal of Computational Physics, 114, 146.CrossRefGoogle Scholar
  23. 23.
    Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). Journal of Computational Physics, 100, 335.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R. (1987). Upwind and high-resolution schemes (Springer, pp. 218–290).Google Scholar
  25. 25.
    Chang, Y. C., Hou, T. Y., Meriman, B., & Osher, S. (1996). Journal of Computational Physics, 464(124), 449.CrossRefGoogle Scholar
  26. 26.
    Welch, S. W. J., & Biswas, G. (2007). Physics of Fluids, 19(1), 012106.CrossRefGoogle Scholar
  27. 27.
    Agarwal, D. K., Welch, S. W. J., Biswas, G., & Durst, F. (2004). ASME International Journal of Heat and Mass Transfer, 126(3), 329.CrossRefGoogle Scholar
  28. 28.
    Dhir, V. K., Warrier, G. R., & Aktinol, E. (2013). Journal of Heat Transfer, 135(6), 061502.CrossRefGoogle Scholar
  29. 29.
    Son, G., Dhir, V. K., & Ramanujapu, N. (1999). ASME Journal of Heat and Mass Heat Transfer, 121(3), 623.CrossRefGoogle Scholar
  30. 30.
    Sato, Y., & Niceno, B. (2015). Journal of Computational Physics, 300, 20.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Son, G., Ramanujapu, N., & Dhir, V. K. (2002). ASME Journal of Heat Transfer, 124(1), 51.CrossRefGoogle Scholar
  32. 32.
    Mukherjee, A., & Dhir, V. K. (2004). ASME International Journal of Heat and Mass Transfer, 126(6), 1023.CrossRefGoogle Scholar
  33. 33.
    Cooper, M., & Lloyd, A. (1969). International Journal of Heat and Mass Transfer, 12(8), 895.CrossRefGoogle Scholar
  34. 34.
    Lee, R., & Nydahl, J. (1989). ASME International Journal of Heat and Mass Transfer, 111(2), 474.CrossRefGoogle Scholar
  35. 35.
    Welch, S. W. (1998). International Journal of Heat and Mass Transfer, 41(12), 1655.CrossRefGoogle Scholar
  36. 36.
    Lay, J., & Dhir, V. K. (1995). ASME International Journal of Heat and Mass Transfer, 117, 394.CrossRefGoogle Scholar
  37. 37.
    Wu, J., Dhir, V. K., & Qian, J. (2007). Numerical heat transfer. Part B: Fundamentals, 51(6), 535.Google Scholar
  38. 38.
    Wu, J., & Dhir, V. K. (2010). ASME International Journal of Heat and Mass Transfer, 132(11), 111501.CrossRefGoogle Scholar
  39. 39.
    Utaka, Y., Kashiwabara, Y., & Ozaki, M. (2013). International Journal of Heat and Mass Transfer, 57(1), 222.CrossRefGoogle Scholar
  40. 40.
    Yoon, H. Y., Koshizuka, S., & Oka, Y. (2001). International Journal of Multiphase Flow, 27(2), 277.CrossRefGoogle Scholar
  41. 41.
    Liao, J., Mei, R., & Klausner, J. F. (2004). International Journal of Heat and Fluid Flow, 25(2), 196.CrossRefGoogle Scholar
  42. 42.
    Fuchs, T., Kern, J., & Stephan, P. (2006). Journal of Heat Transfer, 128(12), 1257.CrossRefGoogle Scholar
  43. 43.
    Hänsch, S., Walker, S., & Narayanan, C. (2017). Nuclear Engineering and Design, 321, 230.CrossRefGoogle Scholar
  44. 44.
    Kunkelmann, C., & Stephan, P. (2009). Numerical heat transfer. Part A: Applications, 56(8), 631.Google Scholar
  45. 45.
    Guion, A., Afkhami, S., Zaleski, S., & Buongiorno, J. (2018). International Journal of Heat and Mass Transfer, 127, 1271.CrossRefGoogle Scholar
  46. 46.
    Demiray, F., & Kim, J. (2004). International Journal of Heat and Mass Transfer, 47(14), 3257.CrossRefGoogle Scholar
  47. 47.
    Voutsinos, C., & Judd, R. (1975). ASME International Journal of Heat and Mass Transfer, 97(1), 88.CrossRefGoogle Scholar
  48. 48.
    Zou, A., Chanana, A., Agrawal, A., Wayner, P. C, Jr., & Maroo, S. C. (2016). Scientific Reports, 6, 20240.CrossRefGoogle Scholar
  49. 49.
    Pandey, V., Biswas, G., Dalal, A., & Welch, S. W. J. (2018). Journal of Heat Transfer, 140(12), 121503.CrossRefGoogle Scholar
  50. 50.
    Siegel, R., & Usiskin, C. (1959). ASME International Journal of Heat and Mass Transfer, 81, 230.CrossRefGoogle Scholar
  51. 51.
    Reimann, M., & Grigull, U. (1975). Wrme-und Stoffbertragung, 8, 229.CrossRefGoogle Scholar
  52. 52.
    Pandey, V., Biswas, G., & Dalal, A. (2018). Numerical Heat Transfer. Part A: Applications, 1.  https://doi.org/10.1080/10407782.2018.1515332.CrossRefGoogle Scholar
  53. 53.
    Son, G., & Dhir, V. K. (1998). International Journal of Heat and Mass Transfer, 120, 183.Google Scholar
  54. 54.
    Panzarella, C. H., Davis, S. H., & Bankoff, S. G. (2000). Journal of Fluid Mechanics, 402, 163.MathSciNetCrossRefGoogle Scholar
  55. 55.
    Berenson, P. J. (1961). ASME International Journal of Heat and Mass Transfer, 83, 351.CrossRefGoogle Scholar
  56. 56.
    Tomar, G., Biswas, G., Sharma, A., & Welch, S. W. J. (2008). Physics of Fluids, 20(9), 092101.CrossRefGoogle Scholar
  57. 57.
    Johnson, R. L. (1968). AIAA Journal, 6, 1456.CrossRefGoogle Scholar
  58. 58.
    Tomar, G., Gerlach, D., Biswas, G., Alleborn, N., Sharma, A., Durst, F., et al. (2007). Journal of Computational Physics, 227(2), 1267.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Tomar, G., Biswas, G., Sharma, A., & Welch, S. W. J. (2009). Physics of Fluids, 21(3), 032107.CrossRefGoogle Scholar
  60. 60.
    Pandey, V., Biswas, G., & Dalal, A. (2017). Physics of Fluids, 29(3), 032104.CrossRefGoogle Scholar
  61. 61.
    Verplaetsen, F. M., & Berghmans, J. A. (1997). Rev. Gen. Therm., 37, 83.CrossRefGoogle Scholar
  62. 62.
    Verplaetsen, F. M., & Berghmans, J. A. (1999). Heat and Mass Transfer, 35, 235.CrossRefGoogle Scholar
  63. 63.
    Usiskin, C., & Siegel, R. (1961). ASME International Journal of Heat and Mass Transfer, 83, 243.CrossRefGoogle Scholar
  64. 64.
    Siegel, R., & Keshock, E. G. (1964). AIChE J., 10(4), 509. http://dx.doi.org/10.1002/aic.690100419.
  65. 65.
    Oka, T., Abe, Y., Mori, Y. H., & Nagashima, A. (1995). ASME International Journal of Heat and Mass Transfer, 117, 408.CrossRefGoogle Scholar
  66. 66.
    Zell, M., Straub, J., & Vogel, B. (1989). PCH, PhysicoChem. Hydrodyn, 11, 812.Google Scholar
  67. 67.
    Lienhard, J. H. (1985). ASME International Journal of Heat and Mass Transfer, 107(1), 262.CrossRefGoogle Scholar
  68. 68.
    Aktinol, E., Warrier, G. R., & Dhir, V. K. (2014). International Journal of Heat and Mass Transfer, 79, 251.CrossRefGoogle Scholar
  69. 69.
    Dhir, V. K., Warrier, G. R., Aktinol, E., Chao, D., Eggers, J., Sheredy, W., et al. (2012). Microgravity Science and Technology, 24(5), 307.CrossRefGoogle Scholar
  70. 70.
    Warrier, G. R., Dhir, V. K., & Chao, D. F. (2015). International Journal of Heat and Mass Transfer, 83, 781.CrossRefGoogle Scholar
  71. 71.
    Straub, J. (1994). Experimental Thermal and Fluid Science, 9(3), 253.CrossRefGoogle Scholar
  72. 72.
    Straub, J. (2000). Experimental Thermal and Fluid Science, 39(4), 490.Google Scholar
  73. 73.
    Di Marco, P., & Grassi, W. (2002). International Journal of Thermal Sciences, 41(7), 567.CrossRefGoogle Scholar
  74. 74.
    Duchemin, L., Josserand, C., & Clavin, P. (2005). Physical Review Letters, 94(22), 224501.CrossRefGoogle Scholar
  75. 75.
    Hogrefe, J. E., Peffley, N. L., Goodridge, C. L., Shi, W. T., Hentschel, H. G. E., & Lathrop, D. P. (1998). Physica D: Nonlinear Phenomena, 123(1), 183.MathSciNetCrossRefGoogle Scholar
  76. 76.
    Westwater, J., & Santangelo, J. (1955). Industrial & Engineering Chemistry Research, 47(8), 1605.CrossRefGoogle Scholar
  77. 77.
    Jerome, B. P. (1960). Transition boiling heat transfer from a horizontal surface. Tech. rep., Cambridge, Mass.: Massachusetts Institute of Technology, Division of Industrial Cooperation.Google Scholar
  78. 78.
    Witte, L., & Lienhard, J. (1982). International Journal of Heat and Mass Transfer, 25(6), 771.CrossRefGoogle Scholar
  79. 79.
    Li, J. Q., Mou, L. W., Zhang, Y. H., Yang, Z. S., Hou, M. H., Fan, L. W., et al. (2018). Experimental Thermal and Fluid Science, 92, 103.CrossRefGoogle Scholar
  80. 80.
    Raj, R., Kim, J., & McQuillen, J. (2009). ASME Journal of Heat Transfer, 131(9), 091502.CrossRefGoogle Scholar
  81. 81.
    Fan, L. W., Li, J. Q., Zhang, L., Yu, Z. T., & Cen, K. F. (2016). Applied Thermal Engineering, 109, 630.CrossRefGoogle Scholar
  82. 82.
    Kang, J. Y., Kim, S. H., Jo, H., Park, G., Ahn, H. S., Moriyama, K., et al. (2016). International Journal of Heat and Mass Transfer, 93, 67.CrossRefGoogle Scholar
  83. 83.
    Freud, R., Harari, R., & Sher, E. (2009). Nuclear Engineering and Design, 239(4), 722.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyGuwahatiIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations