Advertisement

Modeling Proton Exchange Membrane Fuel Cells—A Review

  • Ayodeji DemurenEmail author
  • Russell L. Edwards
Chapter
  • 167 Downloads

Abstract

Proton Exchange Membrane Fuel Cell (also called Polymer Electrolyte Membrane Fuel Cell) PEMFC is an electrochemical device that converts the chemical energy in the Hydrogen–Oxygen reaction directly into electrical energy. The reaction takes place at low temperatures, with water and heat as products. The conversion efficiency could be as high as 70%. These make it very attractive as a power source for many applications in electronics, automotive and back-up generator. Much research has been performed on PEMFC over the past 30 years to improve performance and reliability. This paper reviews such works, with an emphasis on computational methods as a supplement to experimental studies. It starts with a review of the fundamentals of PEMFC, illustrates principles of operation, and finally discusses computational studies which are largely based on standard computational fluid dynamics (CFD) methods. These range from one-dimensional, isothermal, single-phase to three-dimensional, non-isothermal, two-phase flow through porous media. The CFD methods are supplemented with electrical charge equations. Although the state-of-the-art is very advanced and can simulate accurately a single cell, or a small stack with a few cells, large stacks containing tens or hundreds of cells, typical of many practical applications, cannot still be resolved with existing computer resources.

Keywords

Proton exchange membrane fuel cell Polymer electrolyte membrane fuel cell PEMFC Computational fluid dynamics CFD 

References

  1. 1.
    Spalding, D. B. (1951). The combustion of liquid fuels. In Engineering. Cambridge, U.K.: Cambridge University Press.Google Scholar
  2. 2.
    Spalding, D. B. (1953). The combustion of liquid fuels. Symposium (International) on Combustion, 4(1), 847–864.CrossRefGoogle Scholar
  3. 3.
    Spalding, D. B. (1955). Some fundamentals of combustion. In Gas turbine series (Vol. 2, 250 pp.). Butterworth’s Scientific Publications.Google Scholar
  4. 4.
    Spalding, D. B. (1978). A general theory of turbulent combustion. Journal of Energy, 2(1), 16–23.CrossRefGoogle Scholar
  5. 5.
    Spalding, D. B. (1979). Combustion and mass transfer: A textbook with multiple-choice exercises for engineering students (1st ed., p. vii, 409 pp.). Oxford; New York: Pergamon International Library of Science, Technology, Engineering, and Social Studies, Pergamon Press.Google Scholar
  6. 6.
    Dicks, A., & Rand, D. (2018). Fuel cell systems explained (3rd ed.). West Sussex: Wiley.CrossRefGoogle Scholar
  7. 7.
    Stone, R. (2003). Competing technologies for transportation. In G. Hoogers (Ed.), Fuel cell technology handbook. Boca Raton, FL: CRC Press.Google Scholar
  8. 8.
    Wang, Y., et al. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981–1007.CrossRefGoogle Scholar
  9. 9.
    Dutta, S., Shimpalee, S., & Van Zee, J. W. (2001). Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell. International Journal of Heat and Mass Transfer, 44, 2029–2042.zbMATHCrossRefGoogle Scholar
  10. 10.
    Edwards, R. L., & Demuren, A. (2018). Interface model of PEM fuel cell membrane steady-state behavior. International Journal of Energy and Environmental Engineering.Google Scholar
  11. 11.
    Wang, C.-Y. (2004). Fundamental models for fuel cell engineering. Chemical Reviews, 104(10), 4727–4766.CrossRefGoogle Scholar
  12. 12.
    Guvelioglu, G. H., & Stenger, H. G. (2005). Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells. Journal of Power Sources, 147(1–2), 95–106.CrossRefGoogle Scholar
  13. 13.
    Bednarek, T., & Tsotridis, G. (2017). Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics. Journal of Power Sources, 343, 550–563.CrossRefGoogle Scholar
  14. 14.
    Hoogers, G. (2003). Fuel cell components and their impact on performance. In G. Hoogers (Ed.), Fuel cell technology handbook. Boca Raton, FL: CRC Press.Google Scholar
  15. 15.
    Hoogers, G. (2003). Automotive applications. In G. Hoogers (Ed.), Fuel cell technology handbook. Boca Raton, FL: CRC Press.Google Scholar
  16. 16.
    Macedo-Valencia, J., et al. (2016). 3D CFD modeling of a PEM fuel cell stack. International Journal of Hydrogen Energy, 41.CrossRefGoogle Scholar
  17. 17.
    Siegel, C. (2008). Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells. Energy, 33, 1331–1352.CrossRefGoogle Scholar
  18. 18.
    Pharoah, J. G., & Burheim, O. S. (2010). On the temperature distribution in polymer electrolyte fuel cells. Journal of Power Sources, 195(16), 5235–5245.CrossRefGoogle Scholar
  19. 19.
    Burheim, O., et al. (2010). Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell. Journal of Power Sources, 195(1), 249–256.CrossRefGoogle Scholar
  20. 20.
    Barbir, F. (2013). PEM fuel cells: Theory and practice. Academic Press.Google Scholar
  21. 21.
    Wu, H.-W. (2016). A review of recent development: Transport and performance modeling of PEM fuel cells. Applied Energy, 165, 81–106.CrossRefGoogle Scholar
  22. 22.
    Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787–1806.zbMATHCrossRefGoogle Scholar
  23. 23.
    Wilberforce, T., et al. (2017). Modelling and simulation of proton exchange membrane fuel cell with serpentine bipolar plate using MATLAB. International Journal of Hydrogen Energy.Google Scholar
  24. 24.
    Mench, M. (2008). Fuel cell engines. Wiley.Google Scholar
  25. 25.
    Wood, D. L., Yi, J. S., & Nguyen, T. V. (1998). Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells. Electrochimica Acta, 43(24), 3795–3809.CrossRefGoogle Scholar
  26. 26.
    Laurencelle, F., et al. (2001). Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack. Fuel Cells, 1(1), 66–71.CrossRefGoogle Scholar
  27. 27.
    Cooper, K. R., et al. (2007). Experimental methods and data analyses for polymer electrolyte fuel cells. Scribner Associates, Inc.Google Scholar
  28. 28.
    Ju, H., & Wang, C.-Y. (2004). Experimental validation of a PEM fuel cell model by current distribution data. Journal of the Electrochemical Society, 151(11), A1954–A1960.CrossRefGoogle Scholar
  29. 29.
    Mench, M. M., Wang, C. Y., & Ishikawa, M. (2003). In situ current distribution measurements in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 150(8), A1052–A1059.CrossRefGoogle Scholar
  30. 30.
    Wieser, C., Helmbold, A., & Gülzow, E. (2000). A new technique for two-dimensional current distribution measurements in electrochemical cells. Journal of Applied Electrochemistry, 30(7), 803–807.CrossRefGoogle Scholar
  31. 31.
    Geiger, A. B., et al. (2004). An approach to measuring locally resolved currents in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 151(3), A394–A398.CrossRefGoogle Scholar
  32. 32.
    Natarajan, D., & Van Nguyen, T. (2005). Current distribution in PEM fuel cells. Part 1: Oxygen and fuel flow rate effects. AIChE Journal, 51(9), 2587–2598.CrossRefGoogle Scholar
  33. 33.
    Vie, P. J. S., & Kjelstrup, S. (2004). Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell. Electrochimica Acta, 49(7), 1069–1077.CrossRefGoogle Scholar
  34. 34.
    Mench, M., Burford, D. J., & Davis, T. W. (2003). In situ temperature distribution measurements in an operating polymer electrolyte fuel cell, Paper No. 42393. In Proceedings of the 2003 International Mechanical Engineering conference and Exposition (IMECE). Washington, DC: ASME.Google Scholar
  35. 35.
    Burford, D. J., Davis, T. W., & Mench, M. M. (2004). Heat transport and temperature distribution in PEFCs, IMECEC 2004-59497. In Proceedings of the 2004 International Mechanical Engineering conference and Exposition (IMECE), Anaheim, CA.Google Scholar
  36. 36.
    Mench, M. M., Dong, Q. L., & Wang, C. Y. (2003). In situ water distribution measurements in a polymer electrolyte fuel cell. Journal of Power Sources, 124(1), 90–98.CrossRefGoogle Scholar
  37. 37.
    Dong, Q., Kull, J., & Mench, M. M. (2005). Real-time water distribution in a polymer electrolyte fuel cell. Journal of Power Sources, 139(1–2), 106–114.CrossRefGoogle Scholar
  38. 38.
    Edwards, R. L., & Demuren, A. (2016). Regression analysis of PEM fuel cell transient response. International Journal of Energy and Environmental Engineering, 7(3), 329–341.CrossRefGoogle Scholar
  39. 39.
    Stevens, D. A., & Dahn, J. R. (2003). Electrochemical characterization of the active surface in carbon-supported platinum electrocatalysts for PEM fuel cells. Journal of the Electrochemical Society, 150(6), A770–A775.CrossRefGoogle Scholar
  40. 40.
    Neyerlin, K. C., et al. (2006). Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. Journal of the Electrochemical Society, 153(10), A1955–A1963.CrossRefGoogle Scholar
  41. 41.
    Neyerlin, K. C., et al. (2007). Cathode catalyst utilization for the ORR in a PEMFC. Journal of the Electrochemical Society, 154(2), B279–B287.CrossRefGoogle Scholar
  42. 42.
    Soboleva, T., et al. (2011). PEMFC catalyst layers: The role of micropores and mesopores on water sorption and fuel cell activity. ACS Applied Materials & Interfaces, 3(6), 1827–1837.CrossRefGoogle Scholar
  43. 43.
    Cooper, K. R., & Smith, M. (2006). Electrical test methods for on-line fuel cell ohmic resistance measurement. Journal of Power Sources, 160(2), 1088–1095.CrossRefGoogle Scholar
  44. 44.
    Neyerlin, K. C., et al. (2007). Study of the exchange current density for the hydrogen oxidation and evolution reactions. Journal of the Electrochemical Society, 154(7), B631–B635.CrossRefGoogle Scholar
  45. 45.
    Liu, Y., et al. (2009). Proton conduction and oxygen reduction kinetics in PEM fuel cell cathodes: Effects of ionomer-to-carbon ratio and relative humidity. Journal of the Electrochemical Society, 156(8), B970–B980.CrossRefGoogle Scholar
  46. 46.
    Kulikovsky, A. A. (2010). Introduction. In A. A. Kulikovsky (Ed.), Analytical modelling of fuel cells (pp. xiii–xv). Amsterdam: Elsevier.CrossRefGoogle Scholar
  47. 47.
    Uchida, M., et al. (1995). Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 142(12), 4143–4149.CrossRefGoogle Scholar
  48. 48.
    Uchida, M., et al. (1996). Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells. Journal of the Electrochemical Society, 143(7), 2245–2252.CrossRefGoogle Scholar
  49. 49.
    Xie, J., et al. (2004). Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance. Journal of the Electrochemical Society, 151(7), A1084–A1093.CrossRefGoogle Scholar
  50. 50.
    Wang, Y., & Feng, X. (2008). Analysis of reaction rates in the cathode electrode of polymer electrolyte fuel cell I. Single-layer electrodes. Journal of the Electrochemical Society, 155(12), B1289–B1295.CrossRefGoogle Scholar
  51. 51.
    Wang, Y. (2007). Analysis of the key parameters in the cold start of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 154(10), B1041–B1048.CrossRefGoogle Scholar
  52. 52.
    Stumper, J., Haas, H., & Granados, A. (2005). In situ determination of MEA resistance and electrode diffusivity of a fuel cell. Journal of the Electrochemical Society, 152(4), A837–A844.CrossRefGoogle Scholar
  53. 53.
    Yu, Z., & Carter, R. N. (2010). Measurement of effective oxygen diffusivity in electrodes for proton exchange membrane fuel cells. Journal of Power Sources, 195(4), 1079–1084.CrossRefGoogle Scholar
  54. 54.
    Shen, J., et al. (2011). Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. Journal of Power Sources, 196(2), 674–678.CrossRefGoogle Scholar
  55. 55.
    Yu, Z., Carter, R. N., & Zhang, J. (2012). Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells, 12(4), 557–565.CrossRefGoogle Scholar
  56. 56.
    Lange, K. J., Sui, P.-C., & Djilali, N. (2012). Determination of effective transport properties in a PEMFC catalyst layer using different reconstruction algorithms. Journal of Power Sources, 208, 354–365.CrossRefGoogle Scholar
  57. 57.
    Singh, R., et al. (2014). Dual-beam FIB/SEM characterization, statistical reconstruction, and pore scale modeling of a PEMFC catalyst layer. Journal of the Electrochemical Society, 161(4), F415–F424.CrossRefGoogle Scholar
  58. 58.
    Durst, J., et al. (2015). Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. Journal of the Electrochemical Society, 162(1), F190–F203.CrossRefGoogle Scholar
  59. 59.
    Gasteiger, H.A., J.E. Panels, and S.G. Yan. (2004). Dependence of PEM fuel cell performance on catalyst loading. Journal of Power Sources, 127(1–2), 162–171.CrossRefGoogle Scholar
  60. 60.
    Kornyshev, A. A., & Kulikovsky, A. A. (2001). Characteristic length of fuel and oxygen consumption in feed channels of polymer electrolyte fuel cells. Electrochimica Acta, 46(28), 4389–4395.CrossRefGoogle Scholar
  61. 61.
    Jaouen, F., Lindbergh, G., & Sundholm, G. (2002). Investigation of mass-transport limitations in the solid polymer fuel cell cathode. Journal of the Electrochemical Society, 149(4), A437–A447.CrossRefGoogle Scholar
  62. 62.
    Neyerlin, K. C., et al. (2005). Effect of relative humidity on oxygen reduction kinetics in a PEMFC. Journal of the Electrochemical Society, 152(6), A1073–A1080.CrossRefGoogle Scholar
  63. 63.
    Shimpalee, S., et al. (2009). Experimental and numerical studies of portable PEMFC stack. Electrochimica Acta, 54(10), 2899–2911.CrossRefGoogle Scholar
  64. 64.
    Bernardi, D. M., & Verbrugge, M. W. (1991). Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. AIChE Journal, 37(8), 1151–1163.CrossRefGoogle Scholar
  65. 65.
    Springer, T. E., Zawodzinski, T. A., & Gottesfeld, S. (1991). Polymer electrolyte fuel cell model. Journal of the Electrochemical Society, 138(8), 2334–2342.CrossRefGoogle Scholar
  66. 66.
    Kamarajugadda, S., & Mazumder, S. (2008). On the implementation of membrane models in computational fluid dynamics calculations of polymer electrolyte membrane fuel cells. Computers & Chemical Engineering, 32(7), 1650–1660.CrossRefGoogle Scholar
  67. 67.
    Zawodzinski, T. A., et al. (1991). Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes. The Journal of Physical Chemistry, 95(15), 6040–6044.CrossRefGoogle Scholar
  68. 68.
    Zawodzinski, J. T. A., et al. (1993). Water uptake by and transport through Nafion[sup [registered sign]] 117 membranes. Journal of the Electrochemical Society, 140(4), 1041–1047.CrossRefGoogle Scholar
  69. 69.
    Hinatsu, J. T., Mizuhata, M., & Takenaka, H. (1994). Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. Journal of the Electrochemical Society, 141(6), 1493–1498.CrossRefGoogle Scholar
  70. 70.
    Jalani, N. H., Choi, P., & Datta, R. (2005). TEOM: A novel technique for investigating sorption in proton-exchange membranes. Journal of Membrane Science, 254(1–2), 31–38.CrossRefGoogle Scholar
  71. 71.
    Onishi, L. M., Prausnitz, J. M., & Newman, J. (2007). Water−Nafion equilibria. Absence of Schroeder’s paradox. The Journal of Physical Chemistry B, 111(34), 10166–10173.CrossRefGoogle Scholar
  72. 72.
    Kusoglu, A., Kienitz, B. L., & Weber, A. Z. (2011). Understanding the effects of compression and constraints on water uptake of fuel-cell membranes. Journal of the Electrochemical Society, 158(12), B1504–B1514.CrossRefGoogle Scholar
  73. 73.
    Halim, J., et al. (1994). Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle X-ray scattering. Electrochimica Acta, 39(8–9), 1303–1307.CrossRefGoogle Scholar
  74. 74.
    Weber, A. Z., & Newman, J. (2004). Transport in polymer-electrolyte membranes: II. Mathematical model. Journal of the Electrochemical Society, 151(2), A311–A325.CrossRefGoogle Scholar
  75. 75.
    Motupally, S., Becker, A. J., & Weidner, J. W. (2000). Diffusion of water in Nafion 115 membranes. Journal of the Electrochemical Society, 147(9), 3171–3177.CrossRefGoogle Scholar
  76. 76.
    Ye, X., & Wang, C.-Y. (2007). Measurement of water transport properties through membrane-electrode assemblies. Journal of the Electrochemical Society, 154(7), B676–B682.CrossRefGoogle Scholar
  77. 77.
    Ge, S., Yi, B., & Ming, P. (2006). Experimental determination of electro-osmotic drag coefficient in Nafion membrane for fuel cells. Journal of the Electrochemical Society, 153(8), A1443–A1450.CrossRefGoogle Scholar
  78. 78.
    Büchi, F. N., & Scherer, G. G. (1996). In-situ resistance measurements of Nafion® 117 membranes in polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 404(1), 37–43.CrossRefGoogle Scholar
  79. 79.
    Buchi, F. N., & Scherer, G. G. (2001). Investigation of the transversal water profile in Nafion membranes in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 148(Copyright 2001, IEE), 183–188.Google Scholar
  80. 80.
    Kulikovsky, A. A. (2003). Quasi-3D modeling of water transport in polymer electrolyte fuel cells. Journal of the Electrochemical Society, 150(11), A1432–A1439.CrossRefGoogle Scholar
  81. 81.
    Zhang, Z., et al. (2008). Spatial and temporal mapping of water content across Nafion membranes under wetting and drying conditions. Journal of Magnetic Resonance, 194(2), 245–253.CrossRefGoogle Scholar
  82. 82.
    Gebel, G., et al. (2011). The kinetics of water sorption in Nafion membranes: A small-angle neutron scattering study. Journal of Physics: Condensed Matter, 23(23), 234107.Google Scholar
  83. 83.
    Tabuchi, Y., et al. (2011). Analysis of in situ water transport in Nafion® by confocal micro-Raman spectroscopy. Journal of Power Sources, 196(2), 652–658.CrossRefGoogle Scholar
  84. 84.
    Hara, M., et al. (2011). Temperature dependence of the water distribution inside a Nafion membrane in an operating polymer electrolyte fuel cell. A micro-Raman study. Electrochimica Acta, 58, 449–455.CrossRefGoogle Scholar
  85. 85.
    Hwang, G. S., et al. (2013). Understanding water uptake and transport in Nafion using X-ray microtomography. ACS Macro Letters, 2(4), 288–291.CrossRefGoogle Scholar
  86. 86.
    Tsushima, S., Teranishi, K., & Hirai, S. (2004). Magnetic resonance imaging of the water distribution within a polymer electrolyte membrane in fuel cells. Electrochemical and Solid-State Letters, 7(9), A269–A272.CrossRefGoogle Scholar
  87. 87.
    Tsushima, S., et al. (2010). Investigation of water distribution in a membrane in an operating PEMFC by environmental MRI. Journal of the Electrochemical Society, 157(12), B1814–B1818.CrossRefGoogle Scholar
  88. 88.
    Chen, F., et al. (2004). Transient behavior of water transport in the membrane of a PEM fuel cell. Journal of Electroanalytical Chemistry, 566(1), 85–93.CrossRefGoogle Scholar
  89. 89.
    Berg, P., et al. (2004). Water management in PEM fuel cells. Journal of the Electrochemical Society, 151(3), A341–A353.CrossRefGoogle Scholar
  90. 90.
    Majsztrik, P. W., et al. (2007). Water sorption, desorption and transport in Nafion membranes. Journal of Membrane Science, 301(1–2), 93–106.CrossRefGoogle Scholar
  91. 91.
    Monroe, C. W., et al. (2008). A vaporization-exchange model for water sorption and flux in Nafion. Journal of Membrane Science, 324(1–2), 1–6.CrossRefGoogle Scholar
  92. 92.
    Ge, S., et al. (2005). Absorption, desorption, and transport of water in polymer electrolyte membranes for fuel cells. Journal of the Electrochemical Society, 152(6), A1149–A1157.CrossRefGoogle Scholar
  93. 93.
    Adachi, M. (2010). Proton exchange membrane fuel cells: Water permeation through Nafion (R) membranes. Department of Chemistry-Simon Fraser University.Google Scholar
  94. 94.
    Adachi, M., et al. (2010). Thickness dependence of water permeation through proton exchange membranes. Journal of Membrane Science, 364(1–2), 183–193.CrossRefGoogle Scholar
  95. 95.
    Adachi, M., et al. (2010). Water permeation through catalyst-coated membranes. Electrochemical and Solid-State Letters, 13(6), B51–B54.CrossRefGoogle Scholar
  96. 96.
    Meng, H., & Wang, C.-Y. (2004). Electron transport in PEFCs. Journal of the Electrochemical Society, 151(3), A358–A367.CrossRefGoogle Scholar
  97. 97.
    Meng, H., & Wang, C. Y. (2005). Multidimensional modelling of polymer electrolyte fuel cells under a current density boundary condition. Fuel Cells, 5(4), 455–462.CrossRefGoogle Scholar
  98. 98.
    Khandelwal, M., & Mench, M. M. (2006). Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials. Journal of Power Sources, 161(2), 1106–1115.CrossRefGoogle Scholar
  99. 99.
    Ramousse, J., et al. (2008). Estimation of the effective thermal conductivity of carbon felts used as PEMFC gas diffusion layers. International Journal of Thermal Sciences, 47(1), 1–6.CrossRefGoogle Scholar
  100. 100.
    Sadeghi, E., Djilali, N., & Bahrami, M. (2011). Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load. Journal of Power Sources, 196(1), 246–254.CrossRefGoogle Scholar
  101. 101.
    Teertstra, P., Karimi, G., & Li, X. (2011). Measurement of in-plane effective thermal conductivity in PEM fuel cell diffusion media. Electrochimica Acta, 56(3), 1670–1675.CrossRefGoogle Scholar
  102. 102.
    Ji, M., & Wei, Z. (2009). A review of water management in polymer electrolyte membrane fuel cells. Energies, 2(4), 1057–1106.CrossRefGoogle Scholar
  103. 103.
    Bernardi, D. M., & Verbrugge, M. (1992). A mathematical model of the solid polymer electrolyte fuel cell. Journal of the Electrochemical Society, 139.Google Scholar
  104. 104.
    Baschuk, J. J., & Li, X. (2000). Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. Journal of Power Sources, 86(1), 181–196.CrossRefGoogle Scholar
  105. 105.
    Djilali, N., & Lu, D. (2002). Influence of heat transfer on gas and water transport in fuel cells. International Journal of Thermal Sciences, 41(1), 29–40.CrossRefGoogle Scholar
  106. 106.
    Yan, W.-M., et al. (2004). Analysis of thermal and water management with temperature-dependent diffusion effects in membrane of proton exchange membrane fuel cells (Vol. 129, pp. 127–137).Google Scholar
  107. 107.
    Song, D., et al. (2006). Transient analysis for the cathode gas diffusion layer of PEM fuel cells. Journal of Power Sources, 159(2), 928–942.CrossRefGoogle Scholar
  108. 108.
    Falcão, D. S., et al. (2011). 1D and 3D numerical simulations in PEM fuel cells. International Journal of Hydrogen Energy, 36.Google Scholar
  109. 109.
    Gurau, V., Liu, H., & Kakaç, S. (1998). Two-dimensional model for proton exchange membrane fuel cells. AIChE Journal, 44(11), 2410–2422.CrossRefGoogle Scholar
  110. 110.
    Yi, J., & Nguyen, T. (1998). An along-the-channel model for proton exchange membrane fuel cells. Journal of the Electrochemical Society, 145, 1149–1159.CrossRefGoogle Scholar
  111. 111.
    Um, S., Wang, C. Y., & Chen, K. S. (2000). Computational fluid dynamics modeling of proton exchange membrane fuel cells. Journal of the Electrochemical Society, 147(12), 4485–4493.CrossRefGoogle Scholar
  112. 112.
    Siegel, N., et al. (2003). Single domain PEMFC model based on agglomerate catalyst geometry. Journal of Power Sources, 115, 81–89.CrossRefGoogle Scholar
  113. 113.
    Siegel, N., et al. (2004). A two-dimensional computational model of a PEMFC with liquid water transport. Journal of Power Sources, 128, 173–184.CrossRefGoogle Scholar
  114. 114.
    Grujicic, M., & Chittajallu, K. M. (2004). Design and optimization of polymer electrolyte membrane (PEM) fuel cells. Applied Surface Science, 227(1–4), 56–72.CrossRefGoogle Scholar
  115. 115.
    Sui, P. C., & Djilali, N. (2006). Analysis of coupled electron and mass transport in the gas diffusion layer of a PEM fuel cell. Journal of Power Sources, 161(1), 294–300.CrossRefGoogle Scholar
  116. 116.
    Seddiq, M., Khaleghi, H., & Mirzaei, M. (2006). Numerical analysis of gas cross-over through the membrane in a proton exchange membrane fuel cell. Journal of Power Sources, 161(1), 371–379.CrossRefGoogle Scholar
  117. 117.
    Lin, H.-H., et al. (2006). Optimization of key parameters in the proton exchange membrane fuel cell. Journal of Power Sources, 162, 246–254.CrossRefGoogle Scholar
  118. 118.
    Meng, H. (2007). Numerical investigation of transient responses of a PEM fuel cell using a two-phase non-isothermal mixed-domain model. Journal of Power Sources, 171(2), 738–746.CrossRefGoogle Scholar
  119. 119.
    Beale, S., et al. (2009). Two-phase flow and mass transfer within the diffusion layer of a polymer electrolyte membrane fuel cell. Computational Thermal Sciences, 1.Google Scholar
  120. 120.
    Spalding, D. B. (1984). PHOENICS 84: A multi-dimensional multi-phase general-purpose computer simulator for fluid flow, heat transfer and combustion: 36 lecture panels.Google Scholar
  121. 121.
    Spalding, D. B. (1981). Numerical computation of multiphase fluid flow and heat transfer. In C. Taylor & K. Morgan (Eds.), Recent advances in numerical methods in fluids (pp. 161–191). Swansea: Pineridge Press.Google Scholar
  122. 122.
    Pourmahmoud, N., et al. (2011). Three-dimensional numerical analysis of proton exchange membrane fuel cell. Journal of Mechanical Science and Technology, 25(10), 2665–2673.CrossRefGoogle Scholar
  123. 123.
    Meng, H., & Wang, C.-Y. (2004). Large-scale simulation of polymer electrolyte fuel cells by parallel computing. Chemical Engineering Science, 59(16), 3331–3343.CrossRefGoogle Scholar
  124. 124.
    Wu, H., Li, X., & Berg, P. (2009). On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochimica Acta, 54(27), 6913–6927.CrossRefGoogle Scholar
  125. 125.
    Chiu, H.-C., et al. (2012). A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Applied Energy, 96, 359–370.CrossRefGoogle Scholar
  126. 126.
    Zhou, T., & Liu, H. T. (2001). A general three-dimensional model for proton exchange membrane fuel cells. International Journal of Transport Phenomena, 3, 177–198.Google Scholar
  127. 127.
    You, L., & Liu, H. (2002). A two-phase flow and transport model for the cathode of PEM fuel cells. International Journal of Heat and Mass Transfer, 45(11), 2277–2287.zbMATHCrossRefGoogle Scholar
  128. 128.
    You, L., & Liu, H. (2001). A parametric study of the cathode catalyst layer of PEM fuel cells using a pseudo-homogeneous model. International Journal of Hydrogen Energy, 26(9), 991–999.CrossRefGoogle Scholar
  129. 129.
    Dutta, S., Shimpalee, S., & Van Zee, J. W. (2000). Three-dimensional numerical simulation of straight channel PEM fuel cells. Journal of Applied Electrochemistry, 30, 135–146.CrossRefGoogle Scholar
  130. 130.
    Shimpalee, S., & Dutta, S. (2000). Numerical prediction of temperature distribution in PEM fuel cells. Numerical Heat Transfer, Part A: Applications, 38(2), 111–128.CrossRefGoogle Scholar
  131. 131.
    Sui, P. C., & Djilali, N. (2005). Analysis of water transport in proton exchange membranes using a phenomenological model. Journal of Fuel Cell Science and Technology, 2(3), 149–155.CrossRefGoogle Scholar
  132. 132.
    Mazumder, S. (2005). A generalized phenomenological model and database for the transport of water and current in polymer electrolyte membranes. Journal of the Electrochemical Society, 152(8), A1633–A1644.CrossRefGoogle Scholar
  133. 133.
    Um, S., & Wang, C. Y. (2000). Three dimensional analysis of transport and reaction in PEMFC. In ASME fuel cell division (pp. 19–25). ASME: Orlando, FL.Google Scholar
  134. 134.
    Um, S., & Wang, C. Y. (2004). Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells. Journal of Power Sources, 125(1), 40–51.CrossRefGoogle Scholar
  135. 135.
    Wang, Y., & Wang, C.-Y. (2005). Modeling polymer electrolyte fuel cells with large density and velocity changes. Journal of the Electrochemical Society, 152(2), A445–A453.CrossRefGoogle Scholar
  136. 136.
    Carnes, B., et al. (2013). Validation of a two-phase multidimensional polymer electrolyte membrane fuel cell computational model using current distribution measurements. Journal of Power Sources, 236, 126–137.CrossRefGoogle Scholar
  137. 137.
    Bvumbe Tatenda, J., et al. (2016). Review on management, mechanisms and modelling of thermal processes in PEMFC. Hydrogen and Fuel Cells, 1(1), 1–20.CrossRefGoogle Scholar
  138. 138.
    Berning, T., Lu, D. M., & Djilali, N. (2002). Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources, 106(1–2), 284–294.CrossRefGoogle Scholar
  139. 139.
    Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modeling of PEM fuel cells. Journal of the Electrochemical Society, 150(11), A1503–A1509.CrossRefGoogle Scholar
  140. 140.
    Mazumder, S., & Cole, J. V. (2003). Rigorous 3-D mathematical modeling of PEM fuel cells. Journal of the Electrochemical Society, 150(11), A1510–A1517.CrossRefGoogle Scholar
  141. 141.
    Al-Baghdadi, M. A. R. S. (2008). CFD models for analysis and design of PEM fuel cells. New York: Nova Science Publishers.Google Scholar
  142. 142.
    Schwarz, D. H., & Beale, S. B. (2009). Calculations of transport phenomena and reaction distribution in a polymer electrolyte membrane fuel cell. International Journal of Heat and Mass Transfer, 52(17–18), 4074–4081.zbMATHCrossRefGoogle Scholar
  143. 143.
    Strahl, S., Husar, A., & Franco, A. A. (2014). Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: A multiscale modeling approach. International Journal of Hydrogen Energy, 39(18), 9752–9767.CrossRefGoogle Scholar
  144. 144.
    Artemov, V., et al. (2009). A tribute to D. B. Spalding and his contributions in science and engineering. International Journal of Heat and Mass Transfer, 52, 3884–3905.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringOld Dominion UniversityNorfolkUSA

Personalised recommendations