Advertisement

Low-Noise Amplifier for Wireless Local Area Network Applications

  • Malti Bansal
  • Jyoti
Chapter
  • 35 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 637)

Abstract

Wireless local area network is a data transmission technique developed mainly to allocate location-independent network system linked between devices by utilizing radio frequency waves rather than cable infrastructure. The standard protocol used for wireless local area network is IEEE 802.11. The wireless technology offers the capability to allow communication between two or more bodies over distances without the use of wires or cables. LNA is the active block in radio transceiver systems. The design specifications for LNA are generally dependent upon the value of S parameters, power consumption, noise figure, linearity, and gain of transistor. This paper will review the design parameters as well as provide comprehensive review of the existing topologies used for LNA in WLAN applications.

Keywords

Low-noise amplifier Gain Noise figure WLAN S parameters IIP3 

References

  1. 1.
  2. 2.
  3. 3.
    Ooi, B. Z. M., Wong, C. L., Hoh, C. W.: Low-Noise Amplifier with High Linearity. US 8,803,612 B1Google Scholar
  4. 4.
    Azevedo, F., Fortes, F.: A 2.4 GHz Monolithic Single-ended-Input/Differential-Output Low-Noise Amplifier, pp. 1–4. (2007) Google Scholar
  5. 5.
    Srivastava, G., Bansal, M.: A high linearity shunt capacitive feedback LNA for wireless applications. In: Smys, S., Bestak, R., Rocha, Á. (eds.) Inventive Computation Technologies. ICICIT 2019. Lecture Notes in Networks and Systems, vol. 98, Springer, Cham (2020)Google Scholar
  6. 6.
    Gyamlani, S., Zafar, S., Sureja, J., Chaudhari, J.: Comparative study of various LNA topologies used for CMOS LNA design. Int. J Comp Sci. Emerging Tech. 3, 41–49 (2012)Google Scholar
  7. 7.
    Aditi, Bansal, M.: A high linearity and moderate gain LNA for receiver front-end applications in 2.4 GHz ISM band. In: 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), pp. 1–5, Greater Noida, India (2017). https://doi.org/10.1109/ICICCIS.2017.8660854
  8. 8.
    Srivastava, V. M., Kumar, R.: Low noise amplifier for 2.45 GHz frequency band at 0.18 µm CMOS technology for IEEE standard 802.11 b/g WLAN, Int. J. Intell. Syst. Appl., 11, 68–74 (2012)CrossRefGoogle Scholar
  9. 9.
    Aditi, Bansal, M.: High linearity and low noise shunt resistive feedback CMOSLNA in 2.4 GHz ISM band. In: 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 95–99, Noida (2017).  https://doi.org/10.1109/RDCAPE.2017.8358247
  10. 10.
    Shankar, S. U., Dhas, M. D. K.: Design and performance measure of 5.4 GHZ CMOS low noise amplifier using current reuse technique in 0.18 μm technology. Procedia Comput. Sci. 47, 135–143 (2015)CrossRefGoogle Scholar
  11. 11.
    Miguel, J., Machado, H.: LNA for a 2.4 GHz ISM receiver. Dissertation submitted for obtaining the degree of Master in Electrical and Computer Engineering Jury, July (2010)Google Scholar
  12. 12.
    Bansal, M., Jyoti.: A review of low noise amplifier for 2.4 GHz frequency band. In: 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), pp. 1–6, Greater Noida, India (2017).  https://doi.org/10.1109/ICICCIS.2017.8660895
  13. 13.
    Bansal, M., Jyoti.: A review of various applications of low noise amplifier. In: 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), pp. 1–4, Greater Noida, India (2017).  https://doi.org/10.1109/ICICCIS.2017.8660954
  14. 14.
    Bansal, M., Jyoti: CMOS LNA for BLE applications. Int. J. Eng. Technol. Sci. Res. 4(11), 324–331 (2017). ISSN 2394-3386Google Scholar
  15. 15.
    Bansal, M., Jyoti.: Utilizing CMOS low-noise amplifier for bluetooth low energy applications. In: Malik, H., Srivastava, S., Sood, Y., Ahmad, A. (eds.) Applications of Artificial Intelligence Techniques in Engineering. Advances in Intelligent Systems and Computing, vol. 697, Springer, Singapore (2019)Google Scholar
  16. 16.
    Bansal, M., Jyoti.: Low noise amplifier in smart healthcare applications. In: 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 1002–1007, Noida, India (2019).  https://doi.org/10.1109/SPIN.2019.8711705
  17. 17.
  18. 18.
    Aditi, Bansal, M.: Design, analysis, and comparison of LNA topologies for IEEE 802.15.4 Zigbee standard. In: 2017 Conference on Information and Communication Technology (CICT), pp. 1–7, Gwalior (2017).  https://doi.org/10.1109/INFOCOMTECH.2017.8340597
  19. 19.
    Aditi, Bansal, M.: High linearity and high input impedance matching common gate CMOS LNA in 2.4 GHz ISM band. In: 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 90–94, Noida (2017).  https://doi.org/10.1109/RDCAPE.2017.8358246
  20. 20.
    Lee, P. W., Chiu, H. W., Hsieh, T. L., Shen, C. H., Huang, G. W., Lu, S. S.: A SiGe low noise amplifier for 2.4/5.2/5.7 GHz WLAN applications. In: IEEE International Solid-State Circuits Conference, pp. 364–365 (2003)Google Scholar
  21. 21.
    Bansal, M., Aditi.: A high linearity and low noise shunt resistive feedback UWB LNA. In: 2017 Conference on Information and Communication Technology (CICT), pp. 1–5, Gwalior (2017).  https://doi.org/10.1109/INFOCOMTECH.2017.8340596
  22. 22.
    Iyer, M., Shanmuganantham, T.: LNA design for WLAN applications. In: IEEE International Conference on Circuits and Systems, pp. 319–323 (2017)Google Scholar
  23. 23.
    Sivonen, P., Vilander, A., Pärssinen, A.: A gain stabilization technique for tuned RF low-noise amplifiers. IEEE Trans. Circuits Syst. 15, 1702–1705 (2004)CrossRefGoogle Scholar
  24. 24.
    Bansal, M., Singh, D.: LNA for neural applications. Int. J. Comput. Math. Sci. 6(11), 74–81 (2017). ISSN 2347-8527Google Scholar
  25. 25.
    Bansal, M., Singh, D,: Low noise amplifier in bluetooth and bluetooth low energy (BLE) application. In: National Conference on Emerging Trends in Electronics and Communication (ETEC-2019), ISSN 0975-9514, pp. 110–113 (2019)Google Scholar
  26. 26.
    Khosravi, H., Zandian, S., Bijari, A.: A low power, high gain 2.4/5.2 GHz concurrent dual-band low noise amplifier. In: IEEE Annual computing and communication workshop and conference, pp. 788–792 (2019)Google Scholar
  27. 27.
    Bansal, M., Singh, D.: Design and implementation of low noise amplifier in neural signal analysis. In: Gani, A., Das, P., Kharb, L., Chahal, D. (eds.) Information, Communication and Computing Technology. ICICCT 2019. Communications in Computer and Information Science, vol. 1025. Springer, Singapore (2019)Google Scholar
  28. 28.
    Sadowy, J., Tellie, I., GraffeUil, J., Tournier, E., Escotte, L., Plana, R.: Low noise, high linearity, wide bandwidth amplifier using a 0.35 pm SiGe BiCMOS for WLAN applications. In: IEEE Radio frequency Integrated Circuits Symposium, pp. 217–220 (2002)Google Scholar
  29. 29.
    Bansal, M., Singh, D.: Cascode common source LNA with inductive degeneration topology utilizing different output matching circuits in 45 nm CMOS technology. In: 4th International Conference on Communication and Electronics Systems (ICCES-2019), pp. 594–598 (2019) Google Scholar
  30. 30.
    Tsang, T. K. K., El-Gamal, M. N.: Dual-band sub-1 V CMOS LNA for 802.11a/B WLAN applications. In: International Symposium on Circuits and Systems, pp. 217–220 (2003) Google Scholar
  31. 31.
    Kao, C. H., Chiang, Y. T., Yang, J. R.: A concurrent multi-band low-noise amplifier for WLAN/WiMAX applications, In: IEEE International Conference on Electro/Information Technology, pp. 514–517 (2008)Google Scholar
  32. 32.
    Chi, B., Shi, B.: A 1.8 V 2.4 GHZ CMOS on-chip impedance matching low noise amplifier for WLAN applications. In: International Symposium on Circuits and Systems, pp. 189–191 (2003)Google Scholar
  33. 33.
    Bansal, M., Srivastava, G.: High linearity and low power cascode CMOS LNA for RF front-end applications. In: Proceedings of Third International Conference on Intelligent Computing and Control Systems (ICICCS-2019), pp. 1702–1705 (2019)Google Scholar
  34. 34.
    Eslamifar, O., Shirazi, R. F.: Design a dual-band low-power CMOS low noise amplifier for use in WLAN applications. IN: 22nd Iranian Conference on Electrical Engineering, pp. 101–105 (2017)Google Scholar
  35. 35.
    Bansal, M., Srivastava, G.: Design and implementation of LNA for biomedical applications. In: Pandian, A., Ntalianis, K., Palanisamy, R. (eds.) Intelligent Computing, Information and Control Systems. ICICCS 2019. Advances in Intelligent Systems and Computing, vol. 1039. Springer, Cham (2020)Google Scholar
  36. 36.
    Lu, L. H., Wang, Y. S.: A compact 2.4/5.2 GHz CMOS dual-band low-noise amplifier. IEEE Microw. Wirel. Compon. Lett. 15, 685–687 (2005)Google Scholar
  37. 37.
    Bansal, M., Srivastava, G.: A high linearity & high stability cascode CMOS LNA for RF front-end applications. Int. J. Adv. Res. Comput. Commun. Eng. 8(7), 49–54 (2019)Google Scholar
  38. 38.
  39. 39.
    Bansal, M., Singh, D.: Different input impedance matching circuits for cascode common source LNA with inductive degeneration topology in 45 nm CMOS technology. In: 4th International Conference on Communication And Electronics Systems (ICCES-2019), pp. 589–593 (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Malti Bansal
    • 1
  • Jyoti
    • 1
  1. 1.Department of Electronics and Communication EngineeringDelhi Technological UniversityDelhiIndia

Personalised recommendations